A foreword to Teachers and Parents

Dear teachers and parents,

We are pleased to present you with this book as part of a developed chain of mathematics textbooks. For maximum benefit, please note the following:

1- Before solving the verbal problems, please read them out carefully to your pupils and make sure they are understood.

2- There are multiple correct methods of solution to the same problem. It is sufficient for you pupils to mention only one or some according to what is required in the problem. It is with these types of questions that we hope to develop our pupils’ creativity.

3- An attempt has been made to remove barriers between mathematics and other areas of knowledge and practical life according to what has come to be known as “curriculum integration”. If today’s scientists are mainly concerned with “the unity of human knowledge”, then the best time to start is the primary stage. Therefore, it is expected that every single detail in the book will be given attention and care even if it does not belong to “mathematics” in the narrow sense of the word.

4- Some affective aims have been included in this curriculum. This is achieved by forming attitudes towards some social issues (such as the over population) besides developing appreciation and interests towards the study of mathematics. Therefore, required discussions, comments, and other like responses should not be ignored under the pretext that they are not included in school tests.

5- It is not only the customary standards of education in Egypt that have been given apparent attention, but also modern trends in the teaching of mathematics. Among these are presenting comprehensive knowledge of numbers before details pertaining to place value and performing arithmetic operations.

6- In the course of designing this book, circumstances of Egyptian schools have been taken into consideration. Hence the use of measuring tools and the performance of practical experiments has been kept to a minimum.

7- There are activities and exercises at the end of each unit. The exercises are typical of the preplanned output of each unit. The activities, however, might sometimes exceed the contents of the unit with the purpose of reviving extracurricular activities in mathematics. These, in support the output of the unit and can be viewed as enrichment activities at the same time.

May God guide us all to what is in the interest of our beloved country.

The authors
Revision: .. 1
Unit one: Multiplication and division... 7
Lesson 2: Division... 15
Exercises on unit one.. 18
Activities on unit one... 25
Unit two: Numbers up to 99999.. 27
Lesson 1: Thousands.. 28
Lesson 2: Ten thousands.. 37
Exercises on unit two... 45
Activities on unit two... 47
Unit three: Adding and subtracting up to no more than 99999.................. 49
Lesson 1: Finding sum of two numbers... 50
Lesson 2: properties of addition.. 56
Lesson 3: subtracting two numbers... 58
Lesson 4: the relation between subtracting and adding.............................. 62
Exercises on unit three.. 65
Activities on unit three.. 71
Unit four: Geometry... 73
Lesson 1: Solids... 74
Lesson 2: Finding the length of a line segment by using ruler.................... 76
Lesson 3: Geometric constructions... 79
Lesson 4: Congruent of two geometric shapes.. 83
Lesson 5: Visual pattern (recognizing and building them)........................... 88
Lesson 6: The angle... 90
Exercises on unit four.. 97
Activities on unit four.. 99
General Exercises on the units:... 100
Model tests... 119
(1) Find the result of each of the following:

(a) \[465 + 23\] \hspace{1cm} (b) \[784 + 208\] \hspace{1cm} (c) \[365 - 52\] \hspace{1cm} (d) \[537 - 418\]

(e) \[4 \times 3\] \hspace{1cm} (f) \[7 \times 4\] \hspace{1cm} \[4 \div 20\] \hspace{1cm} \[2 \div 18\]

(2) Complete using (< or > or =):

(a) \[218 + 97\] \hspace{1cm} \[218 + 79\]
(b) \[600 - 115\] \hspace{1cm} \[600 - 116\]
(c) \[3 \times 8\] \hspace{1cm} \[4 \times 6\]
(d) \[12 \div 3\] \hspace{1cm} \[12 \div 4\]

(e) \[\frac{1}{5}\] \hspace{1cm} \[\frac{1}{4}\]

(3) Arrange in ascending order:

\[457, 547, 754, 574, 745\]

The order: \[\ldots, \ldots, \ldots, \ldots, \ldots\]

(4) Maryam bought a book for P.T 350 and the rest was P.T 150. How much money did Mariam give to the sales man?

Maryam gave the sales man = \[\ldots = \text{P.T} \ldots\]

(5) Write the fraction which represents the shaded part:

\[\text{Diagram A}\] \hspace{1cm} \[\text{Diagram B}\] \hspace{1cm} \[\text{Diagram C}\]
(1) Complete the missing digits:

(a) \[
\begin{array}{c}
3 & 2 \square \\
\hline
\square & 7 \\
5 & 0
\end{array}
\]
(b) \[
\begin{array}{c}
7 & 2 \square \\
\hline
\square & 4 \square \\
3 & 1
\end{array}
\]
(c) \[
\begin{array}{c}
\square \\
\hline
3 & 15
\end{array}
\]
(d) \[
\begin{array}{c}
\square \\
\hline
3 & \square \\
4 & \square \\
2 & 1
\end{array}
\]

(2) Complete:

(a) \[4 + 4 = 4 \times \square \]
(b) \[12 \div 2 = \square \]
(c) The greatest number formed from digits 5, 8 and 2 is \[\square \square \]
(d) The Shape \[\square \square \square \] is called \[\square \square \square \square \square \] (in the same pattern)
(e) \[327, 324, 321, \square, \square, \square, \square, \square \]

(3) Dina bought a dress by L.E 185 and a shoes for L.E 120. Magdy bought a shirt for L.E 90 and a watch for L.E 235. which of them pay more? Calculate the difference.

What Dina paid = \[\square \square \square \] = L.E \[\square \square \]
What Magdy paid = \[\square \square \square \] = L.E \[\square \square \]

\[\square \square \square \] = L.E \[\square \square \]
(4) (a) If the length of the small square is the unit of length find the perimeter of:

Perimeter = unit length

(b) Write the fraction which represent the shaded part.

...

...

(5) (a) Write the time:

...

(b) What is the sum?

...

The sum = L.E
(1) Choose the correct answer:

(a) The place value of 3 in the number 321 is(units, tens, hundreds)

(b) 324 - 0 324 - 324 (>, <, =)

(c) 6 + 6 + 6 =

(d) The shape represents a(straight line, ray, line segment)

(2) Complete:

(a) 24 ÷ = 8

(b) 4 × = 32

(c) The smallest number formed from 5, 6, 7 is

(d) 6 metre, 10 cm = cm

(3) Complete using (> or < or =):

(a) 3 × 5 5 × 3

(b) 148 + 100 284

(c) 16 ÷ 2 16 ÷ 4

(d) \(\frac{1}{4} \) \(\frac{1}{3} \)

(4) In one of the projects of planet trees in the streets there decided to plant 940 tree in a year. If they plant 450 tree up to now what is the remainder of the trees.

The remainder of the trees = ...

= ...
(5) Colour according to the fraction:

\[
\frac{1}{2} \quad \frac{1}{4}
\]
Unit One
Multiplication and Division
<table>
<thead>
<tr>
<th></th>
<th>0 × 0</th>
<th>1 × 0</th>
<th>2 × 0</th>
<th>3 × 0</th>
<th>4 × 0</th>
<th>5 × 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 × 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 × 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 × 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 × 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 × 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 × 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 × 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 × 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 × 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 × 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 × 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 × 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 × 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 × 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 × 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 × 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 × 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 × 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 × 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 × 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 × 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 × 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 × 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 × 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 × 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 × 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 × 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 × 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 × 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 × 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 × 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 × 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 × 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 × 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 × 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 × 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 × 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 × 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 × 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 × 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 × 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 × 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 × 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 × 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 × 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 × 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 × 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 × 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 × 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 × 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 × 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 × 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 × 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 × 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
First: Multiply $6 \times$ a number or a number $\times 6$:

(1) Complete:

\[
\begin{align*}
6 \times 1 &= \underline{} \\
6 \times 2 &= \underline{} \\
6 \times 3 &= \underline{} \\
6 \times 4 &= \underline{} \\
6 \times 5 &= \underline{} \\
6 \times 6 &= \underline{} \\
6 \times 7 &= \underline{} \\
6 \times 8 &= \underline{} \\
6 \times 9 &= \underline{} \\
\end{align*}
\]

(2) Complete:

\[
\begin{align*}
(\text{a}) \quad 6 \times \underline{} &= 24 \\
(\text{b}) \quad 6 \times \underline{} &= 6 \\
(\text{c}) \quad 6 \times \underline{} &= 30 \\
(\text{d}) \quad \underline{} \times 7 &= 42 \\
(\text{e}) \quad \underline{} \times 6 &= 18 \\
(\text{f}) \quad \underline{} \times 6 &= 0 \\
\end{align*}
\]

(3) Complete using ($<$ or $>$ or $=$):

\[
\begin{align*}
(\text{a}) \quad 6 + 6 &\quad \underline{} \quad 6 \times 6 \\
(\text{b}) \quad 6 \times 4 &\quad \underline{} \quad 4 \times 6 \\
(\text{c}) \quad 6 \times 0 &\quad \underline{} \quad 6 + 0 \\
(\text{d}) \quad 6 \times 6 &\quad \underline{} \quad 66 \\
(\text{e}) \quad 6 \times 8 &\quad \underline{} \quad 42 + 6 \\
(\text{f}) \quad 30 + 6 &\quad \underline{} \quad 6 \times 5 \\
\end{align*}
\]
(4) A woman works 6 hours daily, for 5 days weakly. How many hours does the woman work weakly?

Number of hours = \(\frac{6 \times 5}{6} \) = \(\frac{30}{6} \) = \(5 \) hours.

(5) Said saves L.E 7 each month. How much money does he save in 6 months?

Said saves = \(\frac{7 \times 6}{6} \) = L.E \(42 \)

Second: Multiply 7 \(\times \) a number or a number \(\times \) 7:

(1) Complete:

\[
\begin{align*}
7 \times 1 &= \square \\
7 \times 2 &= \square \\
7 \times 3 &= \square \\
7 \times 4 &= \square \\
7 \times 5 &= \square \\
7 \times 6 &= \square
\end{align*}
\]

\[\begin{align*}
7 \times 7 &= \square \\
7 \times 8 &= \square \\
7 \times 9 &= \square
\end{align*}\]

(2) Complete:

(a) \(\times 5 \) = 35
(b) \(\times \frac{7}{49} \) = 7
(c) \(\frac{9}{7} \times 7 \) = 9
(d) \(\frac{7}{7} \times \square \)
(3) If you know that the number of the days of the week is 7 days, complete as in the example:

Example: \(3 \text{ weeks} = 3 \times 7 = 21 \text{ days}\).

(a) 5 weeks = \(\ldots \times \ldots = \ldots \text{ days}\).

(b) 7 weeks = \(\ldots \times \ldots = \ldots \text{ days}\).

(c) 8 weeks = \(\ldots \times \ldots = \ldots \text{ days}\).

(4) What the price of 7 sandwiches from each of...........?

<table>
<thead>
<tr>
<th>(a) beans</th>
<th>(b) eggs</th>
<th>(c) cheese</th>
</tr>
</thead>
</table>

- (d) What is the cheapest kind of sandwiches
- (e) What can you buy for 17 pounds from the shop?

(5) How many flowers are there in 8 bunches of flowers if each has 7 flowers?

The number of flowers in the bunches = \(\ldots \times \ldots = \ldots \text{ flowers}\).
Unit One

Third: Multiply 8 \times a number or a number \times 8:

(1) Complete:

\[
\begin{align*}
8 \times 1 &= 8 \\
8 \times 2 &= 16 \\
8 \times 3 &= 24 \\
8 \times 4 &= 32 \\
8 \times 5 &= 40 \\
8 \times 6 &= 48 \\
8 \times 7 &= 56 \\
8 \times 8 &= 64 \\
8 \times 9 &= 72
\end{align*}
\]

(2) Complete each of the following:

(a) \[\begin{array}{c|c}
1 & 8 \\
7 & 64 \\
5 & \end{array} \]

(b) \[2 + 3 \rightarrow \times 8 \rightarrow +60 \]

(3) The shop owner divided each pizza into 8 pieces.

What is the number of pieces of four pizzas?

The number of pieces in 4 pizzas = \[
\begin{align*}
\text{number of pizzas} \times \text{pieces per pizza} \\
4 \times 8 = 32
\end{align*}
\]

= 32 \text{ triangular pieces.}
(4) A box of spread cheese has 8 pieces triangles.
What is the number of triangles in 9 boxes?
The number of pieces in 9 boxes =

(5) The pupils of one of the third primary classes stood in 5 lines with 8 pupils in each line. How many pupils are there in this class?
Number of the pupils =

Fourth: Multiply $9 \times$ a number or a number $\times 9$:

(1) you know that:

\[
\begin{align*}
6 \times 9 &= 54 \\
7 \times 9 &= 63 \\
8 \times 9 &= 72 \\
\text{now} \quad 9 \times 9 &= 81
\end{align*}
\]

(2) Complete:

- (a) $9 \times \square = 45$
- (b) $8 \times \square = 72$
- (c) $9 \times \square = 54$
- (d) $9 \times 9 = \square$
- (e) $1 \times \square = 9$
- (f) $3 \times \square = 27$
(3) Complete using (< or > or =):

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>0 × 9</td>
<td></td>
<td>9 + 0</td>
<td>(d)</td>
<td>9 × 9</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>6 × 9</td>
<td></td>
<td>45</td>
<td>(e)</td>
<td>7 × 9</td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>7 × 8</td>
<td></td>
<td>8 × 9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(4) Girgis bought seven books for 9 pounds each. What is the price of all books?

The books cost = __________________________ = __________________ pounds.

(5) A box of colouring pens has 9 pens. What is the number of pens in the 9 boxes?

The number of pens in 9 boxes = __________________________ = __________________
Lesson Two

Division

Last year you have studied that the division operation is the converse operation for multiplication.

For example:

\[3 \times 9 = 27 \]
\[27 \div 3 = 9 \]

(1) Complete as the example:

<table>
<thead>
<tr>
<th>Example</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6 \times 7 = 42</td>
<td>7 \times 8 = 56</td>
</tr>
<tr>
<td>42 \div 6 = 7</td>
<td>56 \div \ldots = 7</td>
</tr>
<tr>
<td>42 \div 7 = 6</td>
<td>56 \div \ldots = 8</td>
</tr>
<tr>
<td>8 \times 9 = 72</td>
<td>7 \times \ldots = 49</td>
</tr>
<tr>
<td>\ldots \div 8 = 9</td>
<td>49 \div 7 = \ldots</td>
</tr>
<tr>
<td>72 \div 9 = \ldots</td>
<td></td>
</tr>
</tbody>
</table>
(2) find the result:
(a) 9 × 9 = □
(b) 7 ÷ 1 = □
(c) 0 ÷ 2 = □
(d) 1 ÷ 1 = □
(e) 0 ÷ 1 = □

(3) Find the result:
(a) 45 ÷ 9 = □
(b) 54 ÷ 9 = □
(c) 36 ÷ 6 = □
(d) 8 ÷ 1 = □
(e) 7 ÷ 7 = □
(f) 0 ÷ 9 = □
(g) 48 ÷ 8 = □
(h) 81 ÷ 9 = □
(i) 64 ÷ 8 = □

(4) Find the result:
(a) \[\sqrt{21}\]
(b) \[\sqrt{32}\]
(c) \[\sqrt{30}\]
(d) \[\sqrt{42}\]
(e) \[\sqrt{72}\]
(f) \[\sqrt{49}\]
(g) \[\sqrt{56}\]
(h) \[\sqrt{63}\]
(i) \[\sqrt{48}\]

(5) Complete:
(a) 15 ÷ 5 = □
(b) 28 ÷ 4 = □
(c) 18 ÷ 3 = □
(d) 48 ÷ □ = 8
(e) 56 ÷ □ = 7
(f) 27 ÷ □ = 3
(g) □ ÷ 6 = 6
(h) □ ÷ 7 = 7
(i) □ ÷ 8 = 9
(6) Complete using (< or > or =)

(a) \(42 \div 6 \) \[_\] \(42 \div 7 \) \[_\]
(b) \(9 \div 3 \) \[_\] \(9 \times 3 \)
(c) \(8 \div 1 \) \[_\] \(8 \div 8 \) \[_\]
(d) \(24 \div 8 \) \[_\] \(21 \div 7 \)
(e) \(0 \div 7 \) \[_\] \(0 \div 6 \) \[_\]

(7) Complete using (+ or − or × or ÷):

(a) \(3 \times 4 = 10 \) \[_\] \[2\]
(b) \(3 \times 8 = 6 \) \[_\] \[4\]
(c) \(18 \div 2 = 3 \) \[_\] \[3\]
(d) \(1 \times 7 = 49 \) \[_\] \[7\]
(e) \(16 \div 2 = 32 \) \[_\] \[4\]
(f) \(6 \) \[_\] \(5 = 7 \) \[_\]
(g) \(36 \div 6 = 2 \) \[_\] \[3\]
(h) \(5 \) \[_\] \(8 = 45 \) \[_\] \[5\]

(8) There are 42 pupils in the class. The teacher wanted to distribute it into 6 groups. How many pupils are there in each group?

\[\text{number of pupils} = \text{________________________} = \text{__________ pupil}\]

(9) There is a box in front of Hossam. It has 45 balls. He wants to put 9 balls in each box. How many boxes does he need?

\[\text{Number of boxes} = \text{________________________} \text{ box}\]

(10) The headmaster of a school distributes 48 pencils, equally among 6 pupils who got full marks in one of maths tests. How many pencils can each pupil take?

\[\text{number of pencils which each pupil can take} = \text{________________________} \text{ pencil}\]
Exercises on Unit One

(1) Find the result:

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4×7 =</td>
<td></td>
<td>15</td>
<td>9×9 =</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>9×5 =</td>
<td></td>
<td>16</td>
<td>7×5 =</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>7×9 =</td>
<td></td>
<td>17</td>
<td>3×6 =</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>8×8 =</td>
<td></td>
<td>18</td>
<td>8×7 =</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>3×8 =</td>
<td></td>
<td>19</td>
<td>6×9 =</td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>6</td>
<td>6×5 =</td>
<td></td>
<td>20</td>
<td>5×6 =</td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>7</td>
<td>4×9 =</td>
<td></td>
<td>21</td>
<td>9×7 =</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>8×6 =</td>
<td></td>
<td>22</td>
<td>6×7 =</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>9</td>
<td>5×8 =</td>
<td></td>
<td>23</td>
<td>2×8 =</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>10</td>
<td>9×8 =</td>
<td></td>
<td>24</td>
<td>8×5 =</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>11</td>
<td>6×4 =</td>
<td></td>
<td>25</td>
<td>4×8 =</td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>12</td>
<td>7×6 =</td>
<td></td>
<td>26</td>
<td>5×9 =</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>13</td>
<td>9×0 =</td>
<td></td>
<td>27</td>
<td>7×7 =</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>6×8 =</td>
<td></td>
<td>28</td>
<td>3×9 =</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(2) Find the result:

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th></th>
<th>(b)</th>
<th></th>
<th>(c)</th>
<th></th>
<th>(d)</th>
<th></th>
<th>(e)</th>
<th></th>
<th>(f)</th>
<th></th>
<th>(g)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td></td>
<td>6</td>
<td></td>
<td>7</td>
<td></td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td>6</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td>6</td>
<td></td>
<td>5</td>
<td></td>
<td>0</td>
<td></td>
<td>4</td>
<td></td>
<td>9</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td></td>
<td>7</td>
<td></td>
<td>9</td>
<td></td>
<td>8</td>
<td></td>
<td>5</td>
<td></td>
<td>8</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>7</td>
<td></td>
<td>5</td>
<td></td>
<td>4</td>
<td></td>
<td>8</td>
<td></td>
<td>8</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td></td>
<td>6</td>
<td></td>
<td>9</td>
<td></td>
<td>7</td>
<td></td>
<td>6</td>
<td></td>
<td>5</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
<td>5</td>
<td></td>
<td>6</td>
<td></td>
<td>8</td>
<td></td>
<td>3</td>
<td></td>
<td>7</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td></td>
<td>8</td>
<td></td>
<td>8</td>
<td></td>
<td>4</td>
<td></td>
<td>6</td>
<td></td>
<td>0</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td>5</td>
<td></td>
<td>9</td>
<td></td>
<td>7</td>
<td></td>
<td>7</td>
<td></td>
<td>7</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td></td>
<td>5</td>
<td></td>
<td>9</td>
<td></td>
<td>8</td>
<td></td>
<td>8</td>
<td></td>
<td>5</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>6</td>
<td></td>
<td>3</td>
<td></td>
<td>6</td>
<td></td>
<td>4</td>
<td></td>
<td>8</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td></td>
<td>3</td>
<td></td>
<td>9</td>
<td></td>
<td>4</td>
<td></td>
<td>0</td>
<td></td>
<td>3</td>
<td></td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
(3) Find the result:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>81</td>
<td>35</td>
<td>18</td>
<td>56</td>
<td>54</td>
<td>30</td>
<td>63</td>
<td>27</td>
<td>49</td>
<td>45</td>
<td>32</td>
<td>40</td>
<td>16</td>
<td>42</td>
<td>56</td>
<td>72</td>
<td>36</td>
<td>88</td>
<td>48</td>
<td>0</td>
<td>42</td>
<td>24</td>
<td>72</td>
<td>40</td>
<td>48</td>
<td>28</td>
<td>45</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>÷</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>9</td>
<td>3</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>9</td>
<td>5</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>=</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>9</td>
<td>3</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>9</td>
<td>5</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

Mathematics For Primary 3 - First Term 2019 - 2020
(4) Find the result:

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>_6_30</td>
<td>_7_42</td>
<td>_2_18</td>
<td>_8_40</td>
</tr>
<tr>
<td>2</td>
<td>_6_36</td>
<td>_8_24</td>
<td>_4_16</td>
<td>_5_25</td>
</tr>
<tr>
<td>3</td>
<td>_8_48</td>
<td>_9_63</td>
<td>_9_36</td>
<td>_3_18</td>
</tr>
<tr>
<td>4</td>
<td>_3_27</td>
<td>_8_56</td>
<td>_9_72</td>
<td>_4_24</td>
</tr>
<tr>
<td>5</td>
<td>_7_35</td>
<td>_8_64</td>
<td>_9_81</td>
<td>_8_32</td>
</tr>
<tr>
<td>6</td>
<td>_7_49</td>
<td>_9_45</td>
<td>_7_28</td>
<td>_9_54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td></td>
<td>×</td>
<td>= 45</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>×</td>
<td>3</td>
<td>= 18</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td></td>
<td>×</td>
<td>= 30</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td></td>
<td>×</td>
<td>= 42</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>×</td>
<td>7</td>
<td>= 28</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td></td>
<td>×</td>
<td>= 24</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>×</td>
<td>4</td>
<td>= 32</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td></td>
<td>×</td>
<td>= 63</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>×</td>
<td>8</td>
<td>= 64</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td></td>
<td>×</td>
<td>= 35</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>×</td>
<td>6</td>
<td>= 24</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td></td>
<td>×</td>
<td>= 36</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>×</td>
<td>3</td>
<td>= 27</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td></td>
<td>×</td>
<td>= 72</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>×</td>
<td>7</td>
<td>= 1</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td></td>
<td>÷</td>
<td>= 1</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>×</td>
<td>8</td>
<td>= 56</td>
</tr>
<tr>
<td>18</td>
<td>4</td>
<td></td>
<td>×</td>
<td>= 16</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>×</td>
<td>5</td>
<td>= 40</td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td></td>
<td>×</td>
<td>= 81</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>×</td>
<td>9</td>
<td>= 18</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td></td>
<td>×</td>
<td>= 48</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>×</td>
<td>7</td>
<td>= 49</td>
</tr>
<tr>
<td>24</td>
<td>27</td>
<td></td>
<td>÷</td>
<td>= 9</td>
</tr>
<tr>
<td>25</td>
<td>20</td>
<td></td>
<td>÷</td>
<td>= 4</td>
</tr>
<tr>
<td>26</td>
<td>16</td>
<td></td>
<td>÷</td>
<td>= 4</td>
</tr>
<tr>
<td>27</td>
<td>30</td>
<td></td>
<td>÷</td>
<td>= 6</td>
</tr>
<tr>
<td>28</td>
<td>7</td>
<td></td>
<td>÷</td>
<td>= 7</td>
</tr>
<tr>
<td>29</td>
<td>3</td>
<td></td>
<td>÷</td>
<td>= 9</td>
</tr>
<tr>
<td>30</td>
<td>4</td>
<td></td>
<td>÷</td>
<td>= 7</td>
</tr>
<tr>
<td>31</td>
<td>28</td>
<td></td>
<td>÷</td>
<td>= 4</td>
</tr>
<tr>
<td>32</td>
<td>18</td>
<td></td>
<td>÷</td>
<td>= 3</td>
</tr>
<tr>
<td>33</td>
<td>63</td>
<td></td>
<td>÷</td>
<td>= 7</td>
</tr>
<tr>
<td>34</td>
<td>28</td>
<td></td>
<td>÷</td>
<td>= 4</td>
</tr>
<tr>
<td>35</td>
<td>15</td>
<td></td>
<td>÷</td>
<td>= 3</td>
</tr>
<tr>
<td>36</td>
<td>56</td>
<td></td>
<td>÷</td>
<td>= 7</td>
</tr>
<tr>
<td>37</td>
<td>54</td>
<td></td>
<td>÷</td>
<td>= 6</td>
</tr>
<tr>
<td>38</td>
<td>64</td>
<td></td>
<td>÷</td>
<td>= 8</td>
</tr>
<tr>
<td>39</td>
<td>81</td>
<td></td>
<td>÷</td>
<td>= 9</td>
</tr>
<tr>
<td>40</td>
<td>42</td>
<td></td>
<td>÷</td>
<td>= 7</td>
</tr>
<tr>
<td>41</td>
<td>18</td>
<td></td>
<td>÷</td>
<td>= 3</td>
</tr>
<tr>
<td>42</td>
<td>12</td>
<td></td>
<td>÷</td>
<td>= 4</td>
</tr>
<tr>
<td>43</td>
<td>3</td>
<td></td>
<td>÷</td>
<td>= 3</td>
</tr>
<tr>
<td>44</td>
<td>3</td>
<td></td>
<td>÷</td>
<td>= 1</td>
</tr>
<tr>
<td>45</td>
<td>4</td>
<td></td>
<td>÷</td>
<td>= 7</td>
</tr>
<tr>
<td>46</td>
<td>2</td>
<td></td>
<td>÷</td>
<td>= 2</td>
</tr>
<tr>
<td>47</td>
<td>8</td>
<td></td>
<td>÷</td>
<td>= 9</td>
</tr>
</tbody>
</table>

Unit One

Mathematics For Primary 3 - First Term
2019 - 2020
(6) Complete using (+ or – or x or ÷)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6 × 9 = 9</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>63 ÷ 9 = 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>64 ÷ 8 = 8</td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4 ÷ 2 = 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>32 ÷ 4 = 4</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>72 ÷ 8 = 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6 × 4 = 4</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>8 ÷ 8 = 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2 ÷ 3 = 15 ÷ 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3 × 2 = 48 ÷ 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>6 ÷ 3 = 3 × 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>9 ÷ 3 = 6 × 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>81 ÷ 9 = 27 ÷ 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4 × 7 = 32 ÷ 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>28 ÷ 4 = 42 ÷ 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>7 ÷ 7 = 0 × 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2 ÷ 9 = 21 ÷ 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>24 ÷ 4 = 30 ÷ 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>56 ÷ 8 = 21 ÷ 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>4 ÷ 2 = 64 ÷ 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>35 ÷ 5 = 10 ÷ 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3 ÷ 3 = 27 ÷ 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3 ÷ 8 = 6 × 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4 ÷ 5 = 18 ÷ 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(7) In one of the parties, there is a table with 4 rows of plates each row has 8 plates. How many plates are there on the table?
Number of plates = ...

= ...

(8) A woman puts each 5 pieces of cake in one plate. How many pieces of cakes does she put in 6 plates?
number of pieces = ... = ...

(9) A tin of cheese weighs 7 Kg what is the weight of 9 tins?
the weight of tins = ... = ... Kg

(10) A father distributes a sum of 27 pounds equally among his three sons. what is the share of each one of them?
A share of each one = ... = ... Pounds.

(11) Huda bought 6 notebooks for 48 pounds. what is the price of each one of them?
the price of a note book = ... = ... pounds.
1. Multiply the number in the centre of the smaller circle by the numbers around this circle, then write the results:

 - 4 × 6
 - 5 × 7
 - 5 × 8

2. Use the different coloured pens to colour the small rectangles which have the same results by the same colour, then answer the questions below:

<table>
<thead>
<tr>
<th>3 × 8</th>
<th>5 + 1</th>
<th>3 × 2</th>
<th>3 × 3</th>
<th>54 + 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 × 9</td>
<td>36 + 6</td>
<td>63 + 7</td>
<td>5 × 1</td>
<td>48 + 8</td>
</tr>
<tr>
<td>27 + 3</td>
<td>25 + 5</td>
<td>30 + 6</td>
<td>4 × 6</td>
<td>2 × 3</td>
</tr>
</tbody>
</table>

 (a) How many colours does you use?

 (b) Add the times of using each colour to get the total number of the rectangles?
Sami found a pattern from table (4) as:

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\times 4 & | & \times 4 \\
\hline
4 & | & 8 & | & 12 & | & 16 & | & 20 \\
\hline
\end{array}
\]

The pattern is: 4, 8, 2, 6, 0
(Notice the unit digit)

Try to find a pattern for table (6) by adding the digits of the number in each answer, then write this pattern.

| 1 × 6 = 6 | 6 = 6 |
| 2 × 6 = 12 | 1 + 2 = 3 |
| 3 × 6 = 18 |
| 4 × 6 = | 8 + 1 = 9 |
| 5 × 6 = |
| 6 × 6 = |
| 7 × 6 = |
| 8 × 6 = 48 | 8 + 4 = 12 → 2 + 1 = 3 |
| 9 × 6 = |

The pattern is:
Unit Two
Numbers up to 99999
Unit Two
Lesson one
Thousands

= 1000 cube
= 10 groups of

A teacher asks the pupils to express the number 1000 by different ways:
Ahmed answered 999 + 1
Fatma answered 500 + 500
Zeinab answered 10 groups of

Now youssef ask his teacher:
Is the sum of LE 1000 equals 10 papers of 100 bank note?
The teacher: yes.
and when Youssef back to his house, his father asked him: How many papers of 200 bank note does the previous sum contain?:

Youssef:

\[
\begin{array}{c}
100 & 100 & 100 & 100 & 100 \\
\end{array}
\]

\[
\begin{array}{c}
200 & 200 & 200 & 200 & 200 \\
\end{array}
\]

5 papers of 200 bank note.

\[
\begin{array}{c}
999 + 1 = 1000 \\
\end{array}
\]

Notice:

this number is read as “one thousand”.

\[
\begin{array}{cccc}
\text{thousands} & \text{hundreds} & \text{tens} & \text{units} \\
1 & 0 & 0 & 0 \\
\end{array}
\]

and it can be represented as in the opposite figure:

(1) Complete as in the example

\[
\begin{array}{c}
1000 = 900 + _100 _ \\
1000 = 800 + _ _ _ _ \\
1000 = 700 + _ _ _ _ \\
1000 = 600 + _ _ _ _ \\
1000 = 500 + _ _ _ _ \\
\end{array}
\]
(2) Write the number:

(3) Complete:
992, 991, ..., 995, 994, ..., 997, ..., 1000, 999
1003, 1002, 1001, ..., 1006, ..., 1008, ..., 1010
1011, ..., 1018, 1017, ..., 1029, ...
..., 1023, 1022, ..., 1035, 1034, ..., 1040

(4) Write in digits the following numbers:
Seven thousands and eighty four: ...
Three thousands five hundreds and nine: ...
Two thousands, six hundreds and seventy: ...
Four thousands and seven: ..

(5) Read the following numbers, then write it as the example:

Example: 995 Nine hundreds and ninety five.
 2153 Two thousands, one hundred and fifty three.

6456 ...
1047 ...
978 ...
3007 ...
4499 ...

(6) Complete:

2000, 1900, 1800, 1700, 1600, 1500, 1400, 1300, 1200, 1100, 1000,
2100,,, 2500,, 2800, 2700,, 3000,
................,, 3500, 3400, 3300,,, 3900,
4200, 4100,,, 4700, 4600,,, 5000,
5100,,,,, 5900

(7) Complete with respect to the original number:

<table>
<thead>
<tr>
<th>Number</th>
<th>add 1</th>
<th>add 10</th>
<th>add 100</th>
<th>add 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>482</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2165</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4759</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7834</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(8) Complete:

<table>
<thead>
<tr>
<th>Number</th>
<th>Subtract 1</th>
<th>Subtract 10</th>
<th>Subtract 100</th>
<th>Subtract 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>9800</td>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>6453</td>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>7984</td>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1236</td>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>2045</td>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
<td>--------------</td>
</tr>
</tbody>
</table>

(9) Complete in same pattern:

3905, 3910, __________, __________, 3925, __________, __________

2814, 2824, __________, __________, 2844, __________, __________

8000, 7500, 7000, __________, __________, __________

9417, 9437, __________, __________, 9477, __________, __________

(10) Complete as the example:

Example: \[6457 = 7 + 50 + 400 + 6000 \]

\[4925 = \]
\[3781 = \]
\[9183 = \]
\[4506 = \]
\[3003 = \]

(11) Complete as the example:

\[8456 = \]
\[7 + 300 + 4000 \]
\[= \]
\[3 + 9000 \]
(12) Write the place value for the circled number:

Example: 4 5 2 8 tens

2 2 4 3 3 4 0 1
7 1 0 2 4 8 5 6
5 6 2 9

(13) Complete according to the place value as the example:

<table>
<thead>
<tr>
<th>Number</th>
<th>Units</th>
<th>Tens</th>
<th>Hundreds</th>
<th>Thousand</th>
</tr>
</thead>
<tbody>
<tr>
<td>4528</td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>9807</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2143</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5664</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(14) Complete (<, = or >)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4167</td>
<td>4097</td>
<td>1253</td>
<td>1254</td>
<td></td>
</tr>
<tr>
<td>2947</td>
<td>1947</td>
<td>9002</td>
<td>9002</td>
<td></td>
</tr>
<tr>
<td>6754</td>
<td>6751</td>
<td>8936</td>
<td>8937</td>
<td></td>
</tr>
</tbody>
</table>

(15) Arrange the following sets of numbers in ascending then descending order:

5449 , 6204 , 2917 , 3028 , 3009

Ascending order: 2917 , 3009 , 3028 , 5449 , 6204

Descending order: 6204 , 5449 , 3028 , 3009 , 2917
(16) Join the card that have the same number:

67 + 7000 7 + 7600 7670

7607 7067 670 + 7000

(17) Write the following numbers in its places on number line:

1900 1500 1200

1000 2000

(18) Complete:

10

+

4532 5023 7900

1607
(19) Recognize the rule, then complete the table:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7770</td>
<td>7780</td>
<td>7790</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7870</td>
<td></td>
<td></td>
<td>7910</td>
<td></td>
</tr>
<tr>
<td>7970</td>
<td></td>
<td></td>
<td>8020</td>
<td></td>
</tr>
</tbody>
</table>

8100

(20) Write the smallest and greatest number using all the digits in each case:

4 7 5 3
Smallest number: ...
Greatest number: ...

2 9 6 6
Smallest number: ...
Greatest number: ...

6 5 1 8
Smallest number: ...
Greatest number: ...

(21) The arrow means smaller than, then write the number in the suitable rectangles:

4732, 4237, 7432, 7423

4327

4372

Al Ashraaf Printing House
Mathematics For Primary 3 - First Term
(22) If the arrow means «greater than», then write the numbers in the suitable rectangles:

9083, 9803, 9308, 9380

9883 → 9838

(23) What is the greatest four digits number?
What is the smallest four digits number?
What is the greatest different four digits number?
What is the smallest different four digits number?
What is the greatest different four digits number and its unit is 6?
What is the greatest different four digits number and its unit is 7?

(24) Which of the following sets of numbers are arranged ascendingly

a) 4721, 5721, 6721, 7721
b) 6025, 5034, 4027, 3620
c) 5440, 1732, 7165, 5423
d) 5621, 1293, 6330, 1257
Lesson Two

ten thousands

Notice:

\[
\begin{array}{c}
9999 + 1 = 10000 \\
\text{this number is read } (\text{ten thousands})
\end{array}
\]

\[
\begin{array}{c|c|c|c|c}
\text{ten} & \text{thousands} & \text{hundreds} & \text{tens} & \text{units} \\
\hline
1 & 0 & 0 & 0 & 0
\end{array}
\]

this number can be shown on the abacus as in the figure:

Now: the teacher to his pupils 10 000

who can express the number 10 000 by different ways?

the answers: Tarek 9999 + 1 Hoda 10 groups of 1000

Adel 5000 + 5000

Reda the smallest 5-digit number you..........................

(1) Write the numbers:

\[
\begin{array}{c}
\text{ten} \quad \text{thousands} \quad \text{hundreds} \quad \text{tens} \quad \text{units} \\
\hline
\text{ten} \quad \text{thousands} \quad \text{hundreds} \quad \text{tens} \quad \text{units}
\end{array}
\]

\[
\begin{array}{c}
\text{ten} \quad \text{thousands} \quad \text{hundreds} \quad \text{tens} \quad \text{units} \\
\hline
\text{ten} \quad \text{thousands} \quad \text{hundreds} \quad \text{tens} \quad \text{units}
\end{array}
\]
(2) Complete the following tables:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>52141</td>
<td>52142</td>
<td>52143</td>
<td>52144</td>
</tr>
<tr>
<td>52146</td>
<td></td>
<td></td>
<td>52145</td>
</tr>
<tr>
<td>76920</td>
<td>76930</td>
<td>76940</td>
<td></td>
</tr>
<tr>
<td>76970</td>
<td></td>
<td>76990</td>
<td></td>
</tr>
<tr>
<td>77020</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(3) Write in digits:

- Seventy two thousands, five hundreds and thirty
- Fifty thousands, three hundreds and society four
- Twenty four thousands, seven hundreds and one
- Ten thousands, two hundreds and thirty four

(4) Read the following number then write it as the example:

Example: 50347 Fifty thousands, three hundreds and forty seven.

26296
84573
96684
31065
(5) Complete as the example:

Example: 23547 = 547 + 23000
 = 7 + 40 + 500 + 3000 + 20000

64365 = 395 + ..
 = 5 + .. + ..

50218 = .. + ..
 = .. + .. + 50000

98760 = .. + ..
 = .. + .. + ..

(6) Complete according to the place value:

<table>
<thead>
<tr>
<th>Number</th>
<th>Units</th>
<th>Tens</th>
<th>Hundreds</th>
<th>Thousand</th>
<th>Ten thousand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6278</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40951</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12430</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(7) Write the place value of the circled digit:

Example: 6 2 4 3 5 hundreds

1 7 9 8 2
9 4 3 0 1
3 4 6 9 7
8 6 9 4 3
9 8 7 6 2
(8) Complete the following tables:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16300</td>
<td>16400</td>
<td>16500</td>
<td>16600</td>
<td>16700</td>
<td>16800</td>
</tr>
<tr>
<td>16900</td>
<td>17000</td>
<td>17100</td>
<td></td>
<td></td>
<td>17900</td>
</tr>
<tr>
<td>99941</td>
<td>99841</td>
<td></td>
<td></td>
<td>99041</td>
<td></td>
</tr>
<tr>
<td>99341</td>
<td></td>
<td></td>
<td>98441</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(9) Complete

<table>
<thead>
<tr>
<th>Number</th>
<th>add 10</th>
<th>add 100</th>
<th>add 1000</th>
<th>add 10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>86249</td>
<td>86259</td>
<td>86349</td>
<td>87249</td>
<td></td>
</tr>
<tr>
<td>57683</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24378</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64328</td>
<td>- 10</td>
<td>- 100</td>
<td>- 1000</td>
<td>- 10000</td>
</tr>
<tr>
<td>12905</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90457</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(10) Complete in the same pattern:

51243, 51253, 51263,
27811, 27711, 27611,
38967, 38975, 38983,
77777, 77666, 77555,
90102, 89102, 88102,
(11) Compete (<, = or >)

<table>
<thead>
<tr>
<th></th>
<th>34265</th>
<th>44189</th>
<th>48206</th>
<th>48106</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>69284</td>
<td>69282</td>
<td>94321</td>
<td>94321</td>
</tr>
<tr>
<td></td>
<td>85643</td>
<td>85593</td>
<td>10025</td>
<td>10000</td>
</tr>
</tbody>
</table>

(12) Arrange the following sets of numbers ascendengey and descendengly:

Ascending order: 52943, 27657, 28654, 32981, 47564
Descending order: 47564, 32981, 28654, 27657, 52943

Ascending order: 87942, 87941, 86847, 12243, 15621
Descending order: 15621, 12243, 86847, 87941, 87942

Ascending order: 63456, 62457, 71493, 59538, 46321
Descending order: 71493, 59538, 62457, 63456, 46321

(13) Form the greatest and smallest numbers using all the digits in each case:

8 2 1 7 9
Greatest number: ..
Smallest number: ..

4 7 4 1 2
Greatest number: ..
Smallest number: ..
(14) Join the cards that have same number:

35035 35 + 3500 35 + 35000

3535 35 + 500 + 3000 535 + 3000

35 + 5000 + 30000 5035 + 30000

(15) By using arrows join in an ascending order:

63528 63852 65832

63258 65382 65823

(16)

Form a number of 5 digits and its hundreds is 9

Form a number of 5 digits its tens digit is twice its units

Form a greatest 5 digits its number and their sum is 3

Form a greatest 5 different digits number and their sum is 12
(17) Under line the nearest number to 40000
[3999, 41111, 39900]
Under line the nearest number to 9999
[9090, 10000, 9900]
Under line the nearest number to 10000
[9900, 9990, 10099]

(18) Complete as the example:

Example

\[
\begin{align*}
24532 & = 532 + 24000 \\
& = 2 + 30 + 500 + 4000 + 20000 \\
532 + 67000 & = \ldots + \ldots + \ldots + \ldots + \ldots \\
37649 & = 649 + \ldots + \ldots + \ldots + \ldots \\
& = 9 + 50 + 800 + 3000 + 70000
\end{align*}
\]
(19) Write the following numbers inside the rectangles such that the arrow goes from smaller to greater:

46875, 48675, 46785, 47685

(20) Put suitable numbers inside the rectangles on the number line:

35000

36000
(1) Complete:

<table>
<thead>
<tr>
<th>Number</th>
<th>Units</th>
<th>Tens</th>
<th>Hundreds</th>
<th>Thousand</th>
<th>Ten thousand</th>
</tr>
</thead>
<tbody>
<tr>
<td>82943</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7532</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2) Write the place value for the circled digit:

- 25 4 3 6
- 897 2 1
- 7492 3

(3) Complete in the same pattern:

- 28530, 28630, 28730, ...
- 64578, 64568, 64558, ...
- 59678, 58678, 57678, ...

(4) Complete using (<, =, or >):

(a) 12678 __________ 44189
(b) 35894 __________ 35904
(c) 93257 __________ 69282
(d) 65289 __________ 65279
(5) Arrange the following numbers in ascending and descending order:

17849, 48928, 32567, 94328, 56394

Ascending order: ...

Descending order: ...

(6) Form the greatest and smallest number from the following digits in digits and in words:

5, 3, 2, 1, 8

Smallest number in digits: ...

By words: ...

Greatest number in digits: ...

By words: ...

(7) Complete:

The number represented by the opposite abacus is..........

(8) 85124 = 124 +

(9) The sum which represented by the opposite figure = LE
Activities
On Unit Two

Cross number puzzle:
Write one number in each square so that it satisfies the following:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

Horizontal numbers
1. The greatest number of 5 different digits.
2. The smallest number of 5 different digits.
3. The greatest number lying between 40,000 and 50,000 and its unit digit is 8
4. The smallest 5-digit number.
5. A 5-digit number whose sum is 27.

Vertical numbers
(a) A 5-digit number whose sum is 20
(b) A 5-digit number whose sum is 22
(c) A 5-digit number whose sum is 24
(d) A 5-digit number whose sum is 24
(e) A 5-digit number whose sum is 20

Numbers and digits
(1) Put the two digits 2 and 7 in the empty spaces in the number 489___3 so that the resulting number is:
(a) as great as possible:
(b) as small as possible:
(2) Rearrange the digits of the number 23157 so that the resulting number is:

(a) as great as possible: ..
(b) as small as possible: ..

(3) Rearrange the digits of the number 4019 so that the resulting number is:

(a) as close as possible to 1000:
(b) as close as possible to 10000:

(4) L.E 1000 (One thousand pound)

(a) Equals 100 - bank note
(b) Equals 200 - bank note
(c) Equals 50 - bank note
(d) Equals 10 - bank note
(e) Equals 20 - bank note

(5) L.E 10000:

(a) Equals 100 - bank note
(b) Equals 200 - bank note
(c) Equals 50 - bank note
(d) Equals 10 - bank note
(e) Equals 20 - bank note
Unit (3)
Adding and subtracting up to no more than 99999
Finding the sum of two numbers

We need to carry addition operations in many different situations as:

- A factory produced 745 and 983 units of a certain product in two consecutive months. What is the number of units produced by this factory in the two months together?

- Mohamed and Markos donate to one of the charities. Mohamed paid 750 pounds and Markos paid 420 pounds, the total that was requested which that charity received from the two persons together. And the following examples show the sum of two numbers.

Example 1:

```
3264
+ 4725
------
7989
```

```
3 + 4 = 7 thousands
2 + 7 = 9 hundreds
6 + 2 = 8 tens
```

```
3264 + 4725 = 7989
```
This can also be expressed as:

<table>
<thead>
<tr>
<th></th>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

The result is read: seven thousands nine hundred and eighty nine.

Example 2: Add:

\[
\begin{array}{c}
2148 \\
+ 1435 \\
\hline
3583
\end{array}
\]

\[1 + 4 + 3 = 8 \text{ tens}\]

\[8 + 5 = 3 + 10\]

2148 + 1435 = 3583

This can also be expressed as:

<table>
<thead>
<tr>
<th></th>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>3</td>
</tr>
</tbody>
</table>

The result is read: three thousand five hundred and eighty three.
Example 3: Add

\[
\begin{align*}
55296 \\
\underline{+ 24637} \\
79933
\end{align*}
\]

Look at the following figures and find out the steps used to obtain the result:

This can also be expressed as:

<table>
<thead>
<tr>
<th>Ten thousands</th>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>2</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>9</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

The result is read: Seventy nine thousands, nine hundred and thirty three.
Finding the sum of two numbers

Exercises

(1) Add:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6345</td>
<td>+</td>
<td>3</td>
<td>2083</td>
<td>+</td>
</tr>
<tr>
<td>2842</td>
<td>+</td>
<td>16</td>
<td>3092</td>
<td>+</td>
</tr>
<tr>
<td>4370</td>
<td>+</td>
<td>123</td>
<td>2227</td>
<td>+</td>
</tr>
<tr>
<td>6284</td>
<td>+</td>
<td>2513</td>
<td>5627</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6946</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4376</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2619</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4391</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2341</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3856</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2146</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1492</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3041</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1546</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7154</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4584</td>
<td>+</td>
</tr>
</tbody>
</table>

(2) Add as in the example:

\[
\begin{align*}
2468 + 4372 + 1543 & = 8383 \\
3604 + 2125 + 2461 & = 8190 \\
1786 + 3127 + 2542 & = 7455 \\
5231 + 2190 + 809 & = 8230 \\
1257 + 493 + 3600 & = 5350 \\
3908 + 2743 + 2529 & = 9180
\end{align*}
\]
(3) Add:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>36854</td>
<td>+49142</td>
<td>28957</td>
<td>+24892</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27665</td>
<td>+38967</td>
<td>69210</td>
<td>+26428</td>
</tr>
</tbody>
</table>

(4) Complete as in the example:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>53116</td>
<td>+24432</td>
<td>23792</td>
<td>+15347</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39782</td>
<td>+12234</td>
<td>35629</td>
<td>+29843</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44536</td>
<td>+17312</td>
<td>22305</td>
<td>+30102</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25441</td>
<td>+36822</td>
<td>29789</td>
<td>+777</td>
</tr>
</tbody>
</table>

(5) Find the result (mentally) for each of the following:

(a) 4375 + 1000 = ..
(b) 79245 + 30 = ..
(c) 394 + 58000 = ..
(d) 7 + 600 + 12000 =
(e) 497 + 99 = ...
(f) 71564 + 1001 =
Finding the sum of two numbers

(6) 2345 primary school children were vaccinated against polio in one department were 1664. what is the total of vaccinated children in the two departments on that day?

The total of vaccinated = .. = child

(7) 26453 and 32349 economic flats were built in two governorates in one year. what is the total number of economic flats built by the two governorates?

 total number of flats built by the two governorates = ..
 = .. flat

(8) Samir saved 875 piastres in one month, 225 piastres in the next month and 950 piastres in the third month. what is the total amount did Samir save?

Total amount Samir saved = .. = piastres

(9) Ahmed, Nagy and Said decided to be partners in a small business they paid respectively 25000, 15000, 30000 pounds. what is the total sum they paid?

Total sum paid = .. = Pounds.
Lesson 2

The properties of the addition operation

First: Omar lives in one of Sohag’s villages. He is used to going to school by bike, the distance between his house to the hostel “on road” is 500m, then from the hostel to the school is 400m. So the distance which Omar takes is:

= The distance from house to the hostel + the distance from the hostel to the school
= 500 + 400 = 900 m

The distance which Omar takes in return =

= the distance from school to the hostel + the distance from the hostel to the house
= 400 + 500 = 900 mètres

What do you notice?

500 + = 400 +

Complete as in the example:

Example: 3652 + 127 = 127 + 3652

(a) 2700 + 358 = + 2700
(b) 6315 + = 1230 + 6315
(c) + 6210 = 6210 + 741
The properties of the addition operation

(1) Complete as in the example:

\[(1000 + 2000) + 700 = 1000 + (2000 + 700)\]

\[(a) \quad (6350 + 650) + 3000 = 6350 + (650 + \ldots)\]

\[(b) \quad (4320 + \ldots) + 180 = 4320 + (1250 + 180)\]

Second:

(2) Notice and complete:

\[
\begin{align*}
2194 + 1209 + 4354 &= 2194 + (1209 + \ldots) \\
2194 + 1209 + 4354 &= 2194 + (1209 + 4354) \\
2194 + 1209 + 4354 &= 2194 + (\ldots + 5016) \\
(\ldots + 3282) + 2943 &= 3174 + (3282 + \ldots) \\
(5210 + 1251) + \ldots &= 5210 + (\ldots + 3539)
\end{align*}
\]

(3) Mohamed found out that \(6275 + 65483 = 71758\) and that \(346 + 654 = 1000\) he immediately concluded that the results of the following addition operations are:

\[
\begin{align*}
(a) \quad 65483 + 6275 &= \ldots \\
(b) \quad 654 + 346 &= \ldots \\
(c) \quad 6275 + 346 + 654 &= \ldots \\
(d) \quad 65483 + 346 + 654 &= \ldots \\
(e) \quad 6275 + 65483 + 346 + 654 &= \ldots
\end{align*}
\]
Unit (3)

Lesson 3

Subtracting two numbers

We need to carry subtracting operations in many different situations as:

- In a school of 793 pupils, 348 pupils participate in the scouting activity, how many pupils do not participate in this activity?

The number of pupils whom do not participate in this activity = 793 - 348 = 445

And the following examples show the subtraction operation:

Example 1:

\[
\begin{align*}
6452 \\
- 2241 \\
\hline
4211
\end{align*}
\]

Notice that this result (4211) can be expressed in any of the following ways:

- The decreased of 2241 than 6452
- The increased of 6452 than 2241
- The remainder of subtracting 2241 from 6452
- The difference between 6452 and 2241
- The difference between 2241 and 6452

In this case we subtract from the greater and the answer can be written as:

<table>
<thead>
<tr>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The result is read: four thousand two hundred and eleven.
Example 2: Subtract 473 – 125

```
  4 7 3
- 1 2 5
  3 4 8
```

13 – 5

6 – 2

473 – 125 = 348

Complete as the example(2):

```
  5 2 9 4
- 2 7 4 9
```

The answer may also be written as:

<table>
<thead>
<tr>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

5294 – 2749 = __________________
(1) Subtract

\[
\begin{array}{cccc}
3987 & 5734 & 76053 & 24305 \\
-1652 & -2568 & -5296 & -3071 \\
\hline
2654 & 3166 & 70767 & 21234 \\
\end{array}
\]

\[
2654 - 1431 = \\
49438 - 36776 = \\
7326 - 5296 = \\
35670 - 2558 = \\
\]

(2) Ali has 1525 piastres. If he buys a box of cheese for 750 piastres, how much money be left with him?
The left money with Ali = - = piastres.

(3) Hanan had 3647 pounds in her saving account now? She take away 1258 pounds. How much money is in her account after the withdrawal?
The remaining amount of money in Hanan’s savings account after the withdrawal = - = pounds.

(4) Complete according to the same sequence:
(a) \[2675, 2668, 2661, \ldots, \ldots, \ldots, \ldots \]
(b) \[9146, \ldots, \ldots, 8946, 8846, \ldots, \ldots, \ldots, \ldots \]
(c) \[63669, 63659, 63649, \ldots, \ldots, \ldots, \ldots \]
(d) \[6954, 6974, 6994, \ldots, \ldots, \ldots, \ldots \]
(e) \[75072, 74972, 74872, \ldots, \ldots, \ldots, \ldots \]
(5) Circle the closest number to the correct answer (without performing the subtraction operation):

(a) 6134 - 2965 = 1000 ; 2000 ; 3000 ; 4000
(b) 4372 - 1278 = 1000 ; 2000 ; 3000 ; 4000
(c) 9586 - 5542 = 1000 ; 2000 ; 3000 ; 4000

(6) Find the result (mentally) for each of the following:

(a) 4976 - 500 =
(b) 4976 - 30 =
(c) 6258 - 258 =
(d) 6258 - 6250 =
(e) 7583 - 99 =
(f) 7583 - 1001 =
the relation between addition and subtraction

(1) Eman saved 130 pounds her father gave her 20 pounds on her birthday. How much money does she saved now?

Complete: \[130 + \underline{\hspace{2em}} = \underline{\hspace{2em}} \text{pounds} \]

Eman took 20 pounds out of her saving to buy some stories. How much money does she save now?

Complete: \[\underline{\hspace{2em}} - 20 = \underline{\hspace{2em}} \]

Complete:

\[20 \]

\[+ \]

\[130 \]

\[= \]

\[20 \]
(2) The opposite figure shows 350 pounds. how much money we need unit the amount becomes 450 pounds.

Complete the following:
The total = +
The complemented amount = -
Complete:

(3) Use the following figure to complete:

\[
\begin{align*}
6908 + 4735 &= \\
4735 + 6908 &= \\
11643 - 6908 &= \\
11643 - 4735 &=
\end{align*}
\]
(4) Complete:

\[
\begin{array}{c}
8374 + 100 = \\
\hline
\text{..} = \\
\hline
\text{..} = \\
\hline
8374 + 10 = \\
\hline
\text{..} = \\
\hline
\text{..} = \\
\end{array}
\]

(5) Complete:

\[
\begin{align*}
874 + 35 &= 909 \\
909 - 874 &= \\
73 + 928 &= \\
1001 - 73 &= 928
\end{align*}
\]

\[
\begin{align*}
35 + 874 &= \\
909 - 35 &= \\
928 + &= \\
1001 - &= \\
\end{align*}
\]

(6) What is the number which if subtracted from 500, the result is 99?
(a)
(b) What is the number added to 734 to make 1000?
(c) If we subtracted 400 from a number the result is 400. Find the number?
(1) Complete using one of the signs (< , = , >): without doing addition or subtraction:

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>5487</td>
<td>+</td>
<td>1623</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9000</td>
</tr>
<tr>
<td>(b)</td>
<td>85732</td>
<td>+</td>
<td>874</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85730 + 876</td>
</tr>
<tr>
<td>(c)</td>
<td>71206</td>
<td>+</td>
<td>61352</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>72000 + 62000</td>
</tr>
<tr>
<td>(d)</td>
<td>3294</td>
<td>-</td>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1000</td>
</tr>
<tr>
<td>(e)</td>
<td>1987</td>
<td>-</td>
<td>425</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1987 - 452</td>
</tr>
<tr>
<td>(f)</td>
<td>7400</td>
<td>-</td>
<td>2700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8400 - 3700</td>
</tr>
</tbody>
</table>

(2) Complete using the suitable numbers:

| | | | | |
|---|---|---|---|
| (a) | 1654 | + | 3729 | > |
| (b) | 80235 | + | | < |
| (c) | 7864 | - | 2135 | = |
| (d) | | + | 10000 | > |
| (e) | 9999 | = | | - |

(3) Circle the closest number to the result (without doing the addition or subtraction):

| | | | | | | | | |
|---|---|---|---|---|---|---|---|
| (a) | 5940 + 3170 | | | | | | | 1000 2000 3000 4000 5000 6000 7000 8000 9000 |
| (b) | 1213 + 2394 | | | | | | | 1000 2000 3000 4000 5000 6000 7000 8000 9000 |
| (c) | 7235 - 1143 | | | | | | | 1000 2000 3000 4000 5000 6000 7000 8000 9000 |
| (d) | 4670 - 3569 | | | | | | | 1000 2000 3000 4000 5000 6000 7000 8000 9000 |
(4) Subtract 2357 from 23194 and add 4209 to the result:

Subtraction operation: ..
- ..

Addition operation: ..
+ ..

(5) Find the result of each of the following:

(a) \(8175 + 6243 - 9751 = \) ..
(b) \(73208 + 1045 - 2045 = \) ..
(c) \(14293 - 8093 - 250 = \) ..
(d) \(64587 - 1487 + 8253 = \) ..

(6) Complete:

\[\begin{array}{c}
+ 100 \\
7451 \\
7551
\end{array} \]

\[\begin{array}{c}
+ 100 \\
5749 \\
12398
\end{array} \]

(7) Choose the correct answer:

(a) Hossam has LE 4236, his sister has LE 8135, they have altogether:

(i) \(8135 - 4236 \) (ii) \(8135 + 4236 \) (iii) \(4236 - 8135 \)

(b) Adel has LE 3540 in his saving account, then he take a way LE 1310 from it:

(i) Subtraction (ii) Multiplication (iii) Addition
(8) Complete:
(a) The number must be added to 4235 so the result will be 7235 is
(b) 1000 + > 999 + 137
(c) If 153 + 547 = 700, 259 + 741 = 1000, then 153 + 259 + 547 + 741 =

(9) Arrange the following sets of numbers ascendingly and descendingly and find the sum of the smallest and the greatest numbers:

(a) 12647, 30625, 9487, 91278, 62368
 Ascendingly: ..
 Descendingly: ..
 The greatest number is: The smallest number is:
 The sum of the greatest and the smallest numbers = + =

(b) 51634, 34527, 12389, 8024, 95632
 Ascendingly: ..
 Descendingly: ..
 The greatest number is: The smallest number is:
 The sum of the greatest and the smallest numbers = + =

(c) 49953, 10728, 27835, 86264, 35867
 Ascendingly: ..
 Descendingly: ..
 The greatest number is: The smallest number is:
 The sum of the greatest and the smallest numbers = + =

(10) Complete in the same sequence:
5234, 5334, 5434, .., ..
8778, 8678, 8578, .., ..
58442, 58542, 58642, .., ..
(11) Write each of the following numbers in the form of the sum of its components as in the Example:

Example:

\[
\begin{array}{c|c|c|c|c}
\text{thousands} & \text{hundreds} & \text{tens} & \text{units} \\
4 & 7 & 3 & 6 \\
\hline
+ & 7 & 0 & 0 \\
\hline
+ & 3 & 0 & \\
\hline
= & 4 & 0 & 0 & 0 \\
\hline
\end{array}
\]

\[
\begin{array}{c|c|c|c|c}
\text{thousands} & \text{hundreds} & \text{tens} & \text{units} \\
9 & 5 & 1 & 8 \\
\hline
+ & 5 & 0 & 0 \\
\hline
+ & \\
\hline
= & \\
\hline
\end{array}
\]

\[4736 = 4000 + 700 + 30 + 6\]

(a) \[9518 = \ldots + \ldots + \ldots + \ldots\]

(b) \[4637 = \ldots + \ldots + \ldots + \ldots\]

(c) \[2907 = \ldots + \ldots + \ldots + \ldots\]

(12) The total amount of deposits in the savings account at a post office in a month was 54786 pounds and in the next month it was 44234 pounds. What is the total amount of deposits in the two months?

The total amount of deposits in two months = \ldots \ldots \ldots \ldots \ldots \ldots = \ldots \ldots pound

(13) A hospital received 39825 pounds of donations in one week and 46774 in the next week. What is the total amount of donations in the two weeks?

The total amount of donations in the two weeks = \ldots \ldots \ldots \ldots \ldots \ldots = \ldots \ldots pound
(14) 1053 cars were parked in a parking lot. Another 408 cars were parked there. The remaining places can take another 37 cars. Find the number of cars this parking lot can accommodate?

The numbers of cars this parking lot can accommodate

(15) 76123 tourists visited Egypt in one month and next month 87679 tourists visited it. What is the difference between the numbers of tourists in the two months?

The difference between the numbers of tourists in the two months =

= tourists

(16) The number of economical flats built in a year in one of the governorates was 36024 flats and 31192 flats were built in another governorates in the same year. What is the difference between the number of economical flats built that year in the two governorates?

The difference between the number of flats =

= flats
(17) The following are the years in which some important historical events took place in Egypt:

1869
1952
1973
2011

- The inauguration of the Suez Canal
- The Glorious July revolution
- The great October victory
- 25 January Revolution

With the help of the previous data, answer the following questions:

(a) How many years passed between the July revolution and the October victory?

(b) Calculate the time that passed between the inauguration of the Suez canal and the October victory.

(c) How many years passed since the July Revolution up till now?

(d) How many years have passed since the 23 July 1952 until 25 January 2011?

(18) Using the properties of addition to find:

\[4372 + 614 + 3648 + 386 \]

\[= \quad + \quad + \quad \]

\[= \quad + \quad \]

\[= \quad \]
(1) Replace each shape with a digit to obtain a correct addition operation:

\[
\begin{array}{c}
\text{+} \\
\text{9} \\
\hline
\text{3} \\
\text{_} \\
\text{_} \\
\text{_} \\
\end{array}
\]

(2) Find two consecutive numbers whose sum is 10001.

\[\text{_} + \text{_} = 10001\]

(3) Think, then find the result.

- Find 36 - 9
 Think: 9 is less than 10 by 1
 Subtract 10: \[36 - 10 = \text{_}\]
 Then add 1: \[_ + 1 = _\]
 Then \[36 - 9 = _\]

- Find 423 - 99
 Think: 99 is less than 100 by 1
 Subtract 100: \[423 - 100 = _\]
 Then add 1: \[_ + 1 = _\]
 Then \[423 - 99 = _\]
(4) Find out the pattern and complete:

(a) 20000, 19000, 17000,, 10000,
(b) 20000, 15000, 11000,,, 5000
Unit (4)
Geometry
Lesson 1
Solids

Practical Exercises: How can we make a box out of cardboard?

Fold the cardboard and glue it to make a box without a lid.

Fold the cardboard and glue it to make closed box.

Match each of the following figures to the solid we can make out of it:
Making a pyramid out of cardboard

Fold the cardboard and glue it to make a pyramid as in the following figure.

Making a prism out of cardboard.

Fold the cardboard and glue it to make a prism as shown in the opposite figure.

Match each of the following figures to the solid we can make out of it:
Using a ruler to measure the length of a line segment

In the opposite figure you will find that the length of this line segment = 5 centimeters.

Therefore \(AB = 5 \) cm.

(1) In each of the following figures, read the measure on the ruler and complete:

\[CA = \ldots \ldots \ldots \text{ cm} \]

\[XY = \ldots \ldots \ldots \text{ cm} \]

\[LM = \ldots \ldots \ldots \text{ cm} \]

\[EF = \ldots \ldots \ldots \text{ cm} \]

\[KN = \ldots \ldots \ldots \text{ cm} \]
Using a ruler to measure the length of a line segment

(2) Use a graded ruler to measure the length of each of the drawn line segments in the following figures:

\[AB = \ldots \text{ cm} \]
\[CD = \ldots \text{ cm} \]
\[EF = \ldots \text{ cm} \]

\[ZL = \ldots \text{ cm} \]
\[MN = \ldots \text{ cm} \]
\[XY = \ldots \text{ cm} \]
(3) Use a graded ruler to measure the length of each of the following:

\[
\begin{align*}
X Y &= \underline{\quad} \text{ cm} \\
Y Z &= \underline{\quad} \text{ cm} \\
Z X &= \underline{\quad} \text{ cm}
\end{align*}
\]

\[
\begin{align*}
A B &= \underline{\quad} \text{ cm} \\
B C &= \underline{\quad} \text{ cm} \\
A C &= \underline{\quad} \text{ cm}
\end{align*}
\]

\[
\begin{align*}
A B &= \underline{\quad} \text{ cm} \\
B C &= \underline{\quad} \text{ cm} \\
C D &= \underline{\quad} \text{ cm} \\
D A &= \underline{\quad} \text{ cm}
\end{align*}
\]

What do you notice?

The figure \(A B C D\) is a \underline{\quad}

\[
\begin{align*}
X Y &= \underline{\quad} \text{ cm} \\
Y Z &= \underline{\quad} \text{ cm}
\end{align*}
\]

\[
\begin{align*}
Z L &= \underline{\quad} \text{ cm} \\
L X &= \underline{\quad} \text{ cm}
\end{align*}
\]

What do you notice?

The figure \(X L Y Z\) is a \underline{\quad}
Lesson 3

Geometric constructions

First: Drawing a line segment of a known length

Draw the line segment AB of length 5 cm use the graded ruler and a pencil.

First step: Mark a point (A) on the ruler edge at the beginning of the graduation (0), then count gradually up to 5, then mark the second point (B).

Second step: join the two points A, B, to get the line segment AB, of length 5 cm.

Remark: It is denoted for the line segment AB by the symbol \(\overline{AB} \),

also the length of \(\overline{AB} \) by AB

it means that: \(\overline{AB} = 5 \text{ cm} \)

in the previous example (\(\overline{AB} = 5 \text{ cm} \) is not true)

(1) Draw a line segment AB with length 4 cm long inside the following rectangle.
(2) Inside the following rectangle draw a line segment, with length 4 cm long which the point X is one of its ends and the other end is Y.

(3) Inside the following rectangle draw two line segments (AB, CD), each with length 5 cm long and intersecting at the point Y.

(4) Inside the following rectangle draw a line segment AB with 4 cm long with the point N at its midpoint.
Second: drawing squares and rectangles on a lattice:

The two figures drawn on this lattice are the square ABCD and the rectangle XYZM. If we take the length of the side of the small square of the lattice as one unit of the length, then the length of the side of ABCD is 4 units. The lengths of the two dimensions of the rectangle XYZM are 5 and 3 of these units (i.e. the length is 5 units and the width is 3 units).

Drill

In the opposite lattice if we take the length of the small square as a length unit, draw the following shapes:

1. Draw the square XYZL of side length 5 units long.
2. Draw the square ABCD of side length 6 units long.

3. Draw the rectangle ABCD whose dimensions are 5,3 units long.

4. Draw the rectangle XYZL whose dimensions are 7,4 units long.
Lesson 4

Congruency of Two Geometric Figures

Practical Exercise (1)
1. Bring a square piece of paper.
2. Use scissors to cut this paper into two triangle-shaped pieces of paper.
3. Put one of the pieces on top of the other. Make sure that these two triangles are exactly the same. Therefore, these 2 triangles are congruent.

Practical Exercise (2)
1. Bring two pieces of paper. Put one of them on the other.
2. Use scissors to cut out any figure you like (out of the two papers at the same time)
3. Remove the two figures from the two papers to get two congruent figures.
4. Check out that these two figures are exactly the same practically.
Practical Exercise (3)

1. Bring tracing paper and copy the figure A B C D.

2. Put it on top of the figure XYZM. Move it until vertex A is on top of vertex X, B on Y, C on Z, and D on M.

You are now sure that the two figures are congruent

Exercises

(1) Identify the two congruent figures and colour them using the same colour:

Mathematics For Primary 3 - First Term
2019 - 2020
(2) Complete drawing the right figure to make it congruent with the left figure. (use tracing paper to check that they are congruent).

(3) Draw a figure congruent with the drawn figure in the opposite lattice.

(4) There are two congruent figures among the following figures. Find them and put (√) in side each one:
(5) Colour each two congruent figures in the same colour:

(6) Two of these three polygons are congruent. Put (√) in side the congruent polygons:
(7) On the right side draw a figure congruent with the polygon on the left side:

(8) A rectangle piece of paper is cut into 4 triangles and colour them with the same colours as in the original figure:
Unit Four
Lesson 5

Visual patterns
(recognizing and building them)

(1) Notice that the groups of figures follow each other according to a certain pattern.

Describe the pattern and complete by drawing the three following figures in each case:

Group One: 🔴 🔴 🔴 🔴 🔴 🔴 🔴

The pattern is __

Group Two: △ △ △ △ △ △ △ △ △ △ △ △ △ △ △ △

The pattern is __

Group Three: 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴

The pattern is __

Group Four: 🔴 🔴 🔴 🔴 🔴 🔴

The pattern is __

Group Five: 🔴 🔴

The pattern is __
Visual patterns

Group Six:

The pattern is

Group Seven: A B A B B A B B B B B A

The pattern is

(2) Form patterns of your own and draw 8 elements for each.
The angle

The previous figure is an angle whose vertex is the point A and its sides are \(AB \) and \(AC \).

Complete the table:

<table>
<thead>
<tr>
<th>The figure</th>
<th>Name of the angle</th>
<th>The vertex</th>
<th>The sides of the angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>(\angle ABC)</td>
<td>B</td>
<td>(BA) and (BC)</td>
</tr>
<tr>
<td></td>
<td>or (\angle CBA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>or (\angle B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>(\angle YX)</td>
<td>Y</td>
<td>(\ldots) and (\ldots)</td>
</tr>
<tr>
<td>O</td>
<td>or (\angle DE)</td>
<td></td>
<td>(\ldots) and (\ldots)</td>
</tr>
<tr>
<td>M</td>
<td>or (\angle NL)</td>
<td></td>
<td>(\ldots) and (\ldots)</td>
</tr>
</tbody>
</table>

Notice that:

- The ray \(AB \) denoted by \(\overrightarrow{AB} \) starting from A, extended from B.
- The ray \(BA \) denoted by \(\overrightarrow{BA} \) starting from B, extended from A.
Measuring angles:

First: Using $\angle L$ as a measuring unit:

Compare between $\angle A B C$ and $\angle X Y Z$

For comparing: notice the number of times of $\angle L$ for each of the two angles containment.

Notice and complete:

$\angle A B C$ has $\ldots \ldots \ldots \ldots$ of the measuring ($\angle L$)

$\angle X Y Z$ has $\ldots \ldots \ldots \ldots$ of the measuring.

and therefore the measure of $\angle A B C$ $\ldots \ldots \ldots \ldots$ the measure of $\angle X Y Z$.

($<$ or $>$ or $=$)
Second: The protractor:

The protractor is a geometric tool used for measuring angles. The straight angle is divided into 180 equal parts each part is 1 degree. Therefore the measuring unit of angles is the degree and is written as 1°.

The opposite figure shows how a protractor is used for measuring an angle.

The measure of $\angle A M B = 50^\circ$.

(1) Use the protractor to measure the shown angles and complete the table:

<table>
<thead>
<tr>
<th>Angle</th>
<th>The measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\angle A$</td>
<td>\ldots</td>
</tr>
<tr>
<td>$\angle B$</td>
<td>\ldots</td>
</tr>
<tr>
<td>$\angle C$</td>
<td>\ldots</td>
</tr>
<tr>
<td>$\angle D$</td>
<td>\ldots</td>
</tr>
</tbody>
</table>
Types of the angles:

Practical exercise:

Move the card board bars as shown in the opposite figure:

1. expresses the angle 0°.

2. expresses the acute angle.
 examples: 20°, 30°, 60°, 79°

3. expresses the right angle, its measure 90°
 examples: 95°, 100°, 150°, 179°

4. expresses the obtuse angle, its measure is greater than 90° and less than 180°

5. expresses the straight angle, its measure is 180°
 (2 right angles)

We will study later more angles getting from moving the bars.
The following figure shows the types of the angles:

- zero angle
- right angle
- straight angle

(2) Complete the following table as in the example:

<table>
<thead>
<tr>
<th>The measure of the angle</th>
<th>Its type</th>
</tr>
</thead>
<tbody>
<tr>
<td>50°</td>
<td>acute</td>
</tr>
<tr>
<td>120°</td>
<td></td>
</tr>
<tr>
<td>90°</td>
<td></td>
</tr>
<tr>
<td>45°</td>
<td></td>
</tr>
<tr>
<td>135°</td>
<td></td>
</tr>
<tr>
<td>100°</td>
<td></td>
</tr>
<tr>
<td>7°</td>
<td></td>
</tr>
<tr>
<td>91°</td>
<td></td>
</tr>
<tr>
<td>180°</td>
<td></td>
</tr>
<tr>
<td>108°</td>
<td></td>
</tr>
</tbody>
</table>
(3) use the protractor to find the measure of each of the following angles, then complete:

Measure of \(\angle A \) = \ldots \degree, and its type is \ldots

Measure of \(\angle D \) = \ldots \degree, and its type is \ldots

Measure of \(\angle X \) = \ldots \degree, and its type is \ldots

Measure of \(\angle C \) = \ldots \degree, and its type is \ldots

Measure of \(\angle F \) = \ldots \degree, and its type is \ldots

Measure of \(\angle Z \) = \ldots \degree, and its type is \ldots
Unit Four

Drawing an angle of known measure:

Example: Draw $\overrightarrow{A B C}$ of measure 60°

1. Draw the ray $\overrightarrow{B A}$

2. Put the centre of the protractor on point B and its base on $\overrightarrow{B A}$, then put a mark at point C at 60°

3. Draw the ray $\overrightarrow{B C}$ you will get $\angle A B C$ with measure 60°

Draw angles with the following measures:

50°, 90°, 95°, 47°, 86°, 150°
(1) On the opposite lattice draw:

(a) A line segment 7 units long.

(b) Square whose side length is 4 units long.

(c) A rectangle whose dimensions are 2 and 7 units long.
 (Consider the length of the small square as a unit length).

(2) Underline the correct answer

(a) The Measure of an acute angle. (90°, less than 90°, more than 90°)

(b) The Measure of right angle is. (90°, less than 90°, more than 90°)

(c) when it is seven o'clock, the angle between the hands of the clock is
 (acute, right, obtuse)

(d) The angle between the hands of the clock is a right angle when it is
 O'clock. (2, 3, 6).

(3) On the following lattice, draw a congruent shape to the drawn shape.
(4) Use the protractor, measure each of the following, then complete:

(a) \(\angle A B C \) = _______°

(b) \(\angle D E F \) = _______°

(c) \(\angle X Y Z \) = _______°

(d) \(\angle L M N \) = _______°

(5) Use the ruler, pencil and the protractor Draw

(a) \(\angle A B C \) where \(\angle A B C \) = 70°

(b) \(\angle X Y Z \) where \(\angle X Y Z \) = 130°

(6) Complete:

(a) The base of the cylinder is in the form __________.

(b) The number of the edges of a cuboid = the number of the edges of a _________.

(c) The angle between the hands of the clock is a straight when it is ______________ O’clock
The following are three congruent triangles:

1. Each of the following figures is made up of these three triangles by assembling them in different positions. Draw 2 line segments inside each figure to divide it into the three triangles:

(2) Visual patterns using matchsticks:

Matchsticks can be used to form different geometric figures. Look at the following table. Find out the pattern, then complete and answer the questions:

<table>
<thead>
<tr>
<th>Order</th>
<th>Shape</th>
<th>Number of matchsticks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) How many matchsticks are needed to form the 6th, 7th and 8th from figures of the same pattern? The Sixth: The seventh The eighth:

(b) According to this pattern, what is the order of the shape formed from 34 matchsticks?

(c) Form a similar pattern using triangles instead of squares. Write the number of matchsticks needed to form the first five shapes.

<table>
<thead>
<tr>
<th>Shape</th>
<th>First</th>
<th>Second</th>
<th>Third</th>
<th>Fourth</th>
<th>Fifth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
General Exerices on the units

Exerices On Unit (1)

(1) Complete:

1. $8 \times 8 = \ldots\ldots$
2. $6 \times 7 = \ldots\ldots$
3. $9 \times 3 = \ldots\ldots$
4. $8 \times 7 = \ldots\ldots$
5. $\ldots\ldots \times 5 = 45$
6. $6 \times \ldots\ldots = 36$
7. $9 \times \ldots\ldots = 81$
8. $\ldots\ldots \times 9 = 63$
9. $\ldots\ldots \times 5 = 40$
10. $36 \div \ldots\ldots = \ldots\ldots$
11. $42 \div \ldots\ldots = \ldots\ldots$
12. $35 \div \ldots\ldots = 5$
13. $\ldots\ldots \div 5 = 9$
14. $56 \div 7 = \ldots\ldots$
15. $24 \div \ldots\ldots = 4$
16. $7 \times \ldots\ldots = 21$
17. $21 \div \ldots\ldots = 7$
18. $9 + 9 + 9 + 9 + 9 = 9 \times \ldots\ldots$
19. $6 + 6 + 6 = \ldots\ldots \times \ldots\ldots$
20. $7 \times 4 = \ldots\ldots + \ldots\ldots + 7 + \ldots\ldots$
21. $3 \times 6 = \ldots\ldots$

(2) Choose the correct answer in each of the following:

1. $4 \times 9 = \ldots\ldots$ (36, 27, 54)
2. $\ldots\ldots \times 7 = 49$ (6, 7, 8)
3. $5 + 5 + 5 + 5 = \ldots\ldots$ (5 × 5, 5 × 6, 5 × 4)
4. $6 + 6 + 6 + 6 = \ldots\ldots$ (6 × 4, 6 × 5, 6 × 6)
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>28</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>45</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

(12, 24, 18)
(6, 5, 7)
(7, 8, 9)
(4, 5, 6)
(4, 5, 6)
(1, 18, 81)
(4, 6, 9)
(4, 5, 6)
(4, 6, 8)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 \times 5</td>
<td>3 \times 7</td>
</tr>
<tr>
<td>2</td>
<td>5 \times 7</td>
<td>49</td>
</tr>
<tr>
<td>3</td>
<td>6 \times 8</td>
<td>5 \times 9</td>
</tr>
<tr>
<td>4</td>
<td>54</td>
<td>8 \times 8</td>
</tr>
<tr>
<td>5</td>
<td>7 \times 9</td>
<td>9 \times 7</td>
</tr>
<tr>
<td>6</td>
<td>4 \times 7</td>
<td>7 + 7 + 7 + 7</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>6 + 6 + 6 + 6</td>
</tr>
<tr>
<td>8</td>
<td>3 + 15</td>
<td>4 \times 6</td>
</tr>
<tr>
<td>9</td>
<td>38 - 18</td>
<td>3 \times 7</td>
</tr>
<tr>
<td>10</td>
<td>24 \div 4</td>
<td>35 \div 5</td>
</tr>
<tr>
<td>11</td>
<td>21 \div 7</td>
<td>1 \times 4</td>
</tr>
<tr>
<td>12</td>
<td>6 + 6 + 6</td>
<td>2 \times 9</td>
</tr>
<tr>
<td>13</td>
<td>49 \div 7</td>
<td>7</td>
</tr>
<tr>
<td>14</td>
<td>24 \div 3</td>
<td>24 \div 8</td>
</tr>
<tr>
<td>15</td>
<td>35</td>
<td>7 \times 5</td>
</tr>
<tr>
<td>16</td>
<td>30 \div 5</td>
<td>3 \times 3</td>
</tr>
</tbody>
</table>
(4) Complete in the same pattern:

1. 6, 12, 18,,,
2. 54, 48, 42,,,
3. 63, 54, 45,,,

(5) Amr is a good pupil, he studies 6 hours everyday. How many hours does he spend in studying in 9 days.
 The number of studying in hours = = hours.

(6) A box of colours, it contains 5 colours. How many colours are there in 7 boxes?
 The number of colours = =

(7) If the price of a sandwich of chicken is 8 pounds. What is price of 6 sandwiches?
 The price of sandwiches = = pounds.

(8) Ahmed saves 7 pounds every week. How much money does Ahmed save in 4 weeks?
 What Ahmed saves = = pounds.

(9) Salma bought 4 books of 6 pounds for each. How much money did Salama pay?
 What Salama paid = = pounds.

(10) A man distributes 45 pounds among his 5 sons, how much money does each son take?
 What each son take = = pound.

(11) 54 oranges is divided equally on 6 plates. How many oranges are there in each plate?
 Number of oranges = = orange
Exercises
On Unit (2)

(1) Complete the following:
1. Six thousands, five hundreds and fifty
2. Four thousands, six hundreds and thirty
3. Seventeen thousands, nine hundred and thirty
4. Thirty seven thousands, one hundred and thirty four
5. Five thousands and one
6. Eight thousands and nine
7. Twenty six thousands, one hundred and fifty
8. Sixty three thousands and eight
9. Ten thousands, one hundreds and one
10. One thousands, two hundreds and forty

(2) Write in letters each of the following:
1. 8576 is written in letters as
2. 9009 is written in letters as
3. 3030 is written in letters as
4. 2678 is written in letters as
5. 9531 is written in letters as
6. 1528 is written in letters as
7. 8576 is written in letters as
8. 25552 is written in letters as
9. 80000 is written in letters as
10. 11064 is written in letters as ____________________________

11. 60044 is written in letters as ____________________________

12. 10010 is written in letters as ____________________________

(3) Complete each of the following

1. 4965 = __________ + __________ + __________ + __________

2. 18146 = __________ + __________ + __________ + __________

3. 75432 = __________ + __________ + __________ + __________

4. 6587 = __________ + 6000

5. 12430 = 30 + 400 + __________

6. 87981 = 81 + 900 + __________

7. 43191 = 1 + __________ + __________ + __________ + 40000

8. 6523 = 500 + __________ + __________ + __________

(4) Write the place value of the encircled digit:

1. 9 5 4 3 2

2. 4 3 2 1 7

3. 4 0 0 3 9

4. 3 7 5 9 4

5. 0 0 9 5

6. 0 1 8 7 9

7. 9 6 2 5

8. 6 5 9 6

9. 9 8 1 6 2

10. 9 5 6 0 0

11. 4 6 8 0 1

12. 6 5 4 9 4

13. 2 4 5 1 3
(5) Write the place value of the encircled digit:

<table>
<thead>
<tr>
<th></th>
<th>8 6 4 3 2</th>
<th>8 7 8 5 0 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5 3 2 3 7</td>
<td>7 8 1 6 2</td>
</tr>
<tr>
<td>3</td>
<td>6 0 9 6 9</td>
<td>4 5 6 0 9</td>
</tr>
<tr>
<td>4</td>
<td>4 3 5 9 4</td>
<td>4 6 8 0 8</td>
</tr>
<tr>
<td>5</td>
<td>5 0 7 5 5</td>
<td>7 5 4 9 9</td>
</tr>
<tr>
<td>6</td>
<td>8 7 4 7 9</td>
<td>1 7 5 1 3</td>
</tr>
<tr>
<td>7</td>
<td>8 9 5 3 5</td>
<td></td>
</tr>
</tbody>
</table>

(6) Rearrange the following numbers ascendingly and descendingly:

Ascendingly:
- 6524, 4524, 7624, 1624
- 9434, 9344, 9734, 9334
- 8721, 8235, 8324, 8887
- 6819, 6813, 6713, 6820

Descendingly:
- 6524, 4524, 7624, 1624
- 9434, 9344, 9734, 9334
- 8721, 8235, 8324, 8887
- 6819, 6813, 6713, 6820
(7) Complete in the same pattern:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 1 | 6542, 6553, 6564,
| 2 | 2225, 3235, 4245,
| 3 | 5686, 5675, 5664,
| 4 | 9866, 9856, 9846,
| 5 | 2211, 3322, 4433,
| 6 | 7979, 6868, 5757,
| 7 | 4400, 4600, 4800,
| 8 |, 6000, 8000, 10000
| 9 |, 3000, 3100, 3200,
| 10 |, 5000, 7000, 9000

Exerices on unit (3)

Add

<table>
<thead>
<tr>
<th></th>
<th>1253</th>
<th>6052</th>
<th>4704</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>+ 2324</td>
<td>+ 781</td>
<td>+ 3176</td>
</tr>
<tr>
<td>(d)</td>
<td>+ 2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g)</td>
<td>+ 12301</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1975</th>
<th>5062</th>
<th>12111</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e)</td>
<td>+ 1975</td>
<td>+ 5062</td>
<td></td>
</tr>
<tr>
<td>(f)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>18087</th>
<th>627</th>
<th>430</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>18087</td>
<td>627</td>
<td>430</td>
</tr>
<tr>
<td>(h)</td>
<td>8023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i)</td>
<td>2643</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Choose the suitable relation (>, <, =)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4567</td>
<td>2135</td>
<td>></td>
<td>=</td>
<td>5389</td>
<td>+ 1000</td>
<td>3</td>
<td>2135</td>
<td>+ 4567</td>
</tr>
<tr>
<td>2</td>
<td>5289</td>
<td>1000</td>
<td>></td>
<td>=</td>
<td>6340</td>
<td>+ 4320</td>
<td>3</td>
<td>6340</td>
<td>+ 4320</td>
</tr>
<tr>
<td>3</td>
<td>6340</td>
<td>2320</td>
<td>=</td>
<td>=</td>
<td>7234</td>
<td>+ 1320</td>
<td>4</td>
<td>7234</td>
<td>+ 1320</td>
</tr>
<tr>
<td>4</td>
<td>8527</td>
<td>2500</td>
<td>></td>
<td>=</td>
<td>8527</td>
<td>- 3500</td>
<td>5</td>
<td>8527</td>
<td>- 3500</td>
</tr>
<tr>
<td>5</td>
<td>6266</td>
<td>266</td>
<td>></td>
<td>=</td>
<td>4000</td>
<td>+ 2000</td>
<td>6</td>
<td>4000</td>
<td>+ 2000</td>
</tr>
<tr>
<td>6</td>
<td>9736</td>
<td>8736</td>
<td>></td>
<td>=</td>
<td>400</td>
<td>+ 700</td>
<td>7</td>
<td>400</td>
<td>+ 700</td>
</tr>
<tr>
<td>7</td>
<td>2020</td>
<td>1000</td>
<td>></td>
<td>=</td>
<td>3020</td>
<td>- 1000</td>
<td>8</td>
<td>3020</td>
<td>- 1000</td>
</tr>
<tr>
<td>8</td>
<td>2010</td>
<td>2008</td>
<td>=</td>
<td>=</td>
<td>3</td>
<td></td>
<td>9</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
10 9215 - 43
11 72163 - 3363
12 2516 + 384
13 85632 - 7289
14 8615 - 2419
15 45698 + 34302
16 (6300 + 89)-89
17 7 unit; 5 ten, 7 thousands

43 + 9215
68800
4000 - 384
78343
3450 + 1250
eighty thousands
6300
757

(3) Add:
1 1452 + 8023 =
2 4580 + 3029 =
3 2789 + 4211 =
4 20268 + 11673 =
5 17077 + 5725 =
6 8435 + 777 =
7 5482 + 4517 =
8 2358 + 87641 =
9 31239 + 8549 =
10 14527 + 1523 + 287 =

(4) Complete:
1 5643 + 4125 = 4125 +
2 2008 + = 2010 + 2008
3 (7004 + 8657) + 2153 = + (8657 + 2153)
4 (2005 + 3450) + = 2005 + (3450 + 7878)
5 (12356 +) + 8400 = + (3005 + 8400)
6 (36572 + 52132) + 40008 = + (........................+40008)
(5) Encircle the closest number to the result (without adding):

1. $3287 + 2732 = \ldots \ldots \ldots \ldots \ldots [5000, 4000, 6000]$
2. $4009 + 3225 = \ldots \ldots \ldots \ldots \ldots [6000, 7000, 8000]$
3. $7052 + 3806 = \ldots \ldots \ldots \ldots \ldots [10000, 9000, 8000]$
4. $12198 + 3806 = \ldots \ldots \ldots \ldots \ldots [15000, 16000, 4000]$
5. $5302 + 113 = \ldots \ldots \ldots \ldots \ldots [6000, 5000, 7000]$

(6) Given that $24869 + 4251 = 29120$ find the result of the following (mentally):

1. $24869 + 5251 = \ldots \ldots \ldots \ldots \ldots$
2. $24869 + 2251 = \ldots \ldots \ldots \ldots \ldots$
3. $24859 + 4241 = \ldots \ldots \ldots \ldots \ldots$
4. $24569 + 4251 = \ldots \ldots \ldots \ldots \ldots$
5. $20869 + 8251 = \ldots \ldots \ldots \ldots \ldots$

(7) Colour the cards which give equal results with the same colour:

- $17492 + 53978$
- $29064 + 18184$
- $700 + 90 + 5$

- $18180 + 29068$
- $(542+317)+151$
- $63978 + 7492$

- 795
- $53978 + 17492$
- $(511+542)+317$
(8) Use the digits 1, 7, 2, 5 to determine the value of:

The greatest 4 different number is

The smallest digit number is

The sum of the two numbers = + =

The difference = - =

(9) If the number of born children in one month in Aswan is 27854 and in Kena is 54069, find their sum in the two governorates.

The sum = = people

(10) Subtract:

(a) 6534
- 4123

(b) 7682
- 453

(c) 9842
- 87

(d) 42780
- 1239

(e) 98247
- 49128

(f) 12530
- 10643

(g) 46200
- 12483

(h) 81008
- 64029

(i) 12000
- 7859

(11) Subtract:

1 4259 - 948 =

2 6410 - 2389 =

3 51219 - 37005 =

4 35797 - 28980 =
5. \(20009 - 16789 = \)
6. \(50007 - 34160 = \)
7. \(80054 - 89 = \)
8. \(10000 - 9999 = \)
9. \(99991 - 89999 = \)

(12) Encircle the closest number to the result (without adding)

1. \(7157 - 4852 = \) [1000, 2000, 3000]
2. \(5827 - 952 = \) [4000, 5000, 6000]
3. \(6928 - 4219 = \) [1000, 2000, 3000]
4. \(7871 - 3128 = \) [4000, 3000, 5000]
5. \(23111 - 13216 = \) [1000, 10000, 15000]
6. \(4272 - 389 = \) [3000, 4000, 2000]

(13) Choose the suitable (\(>\); \(<\); \(=\))

1. \(5980 + 3764\)
2. \(12897 + 56328\)
3. \(8 + 200\)
4. \(7809 + 2098\)
5. \(85732 + 874\)
6. \(18248 + 17233\)
7. \(5029\)

3764 + 5980
56327 + 12898
2008
8000
85752 + 854
19154 + 42245
2198 + 2831
(14) Rearrange the following numbers ascendingly once and descendingly once, then find the sum of the greatest and the smallest and the difference between them:

(a) 2541, 4251, 1542, 4521
Asendingly: ..
Descendingly: ..
The greatest number is
The smallest number is
The sum of the two numbers = + =
The difference = - =

(b) 73638, 25618, 93818, 3620
Asendingly: ..
Descendingly: ..
The greatest number is
The smallest number is
The sum of the two numbers = + =
The difference = - =

(15) Complete the following:

\[
\begin{array}{cccc}
6 & 8 & 1 & 7 \\
\hline \\
+ & & & \hline \\
7 & 0 & 5 & 7 \\
\hline
\end{array}
\]
\[
\begin{array}{cccc}
1 & 1 & 0 & 3 & 1 \\
\hline \\
- & & & \hline \\
1 & 0 & 4 & 0 & 6 \\
\hline
\end{array}
\]

\[
\begin{array}{cccc}
5 & 9 & 6 \\
\hline \\
+ & & & \hline \\
6 & 2 & 8 & 6 \\
\hline
\end{array}
\]

\[
\begin{array}{cccc}
3 & 9 \\
\hline \\
- & & & \hline \\
8 & 7 \\
\hline
\end{array}
\]

\[
\begin{array}{cccc}
1 & 3 & 0 & 8 & 7 \\
\hline \\
- & & & \hline \\
2 & 5 & 7 & 6 \\
\hline
\end{array}
\]
(16) Complete in the same pattern

1 5819, 4819, 3819, ,
2 6923, 6823, 6723, ,
3 47839, 47829, 47819, ,
4 , 4200, 4600, 5000,
5 27005, 27055, 27105, ,
6 ,, 15500, 14000, 12500

(17) Rearrange the following numbers ascendingly once and
descendingly then find the sum of the greatest and the smallest and
the difference between them

(a) 42300, 6751, 26075, 36507, 27750

 The ascending order :,,
 The descending order :,,
 The greatest number is
 The smallest number is
 The sum of the two numbers = + =
 The difference = - =

(b) 89632, 40032, 231981, 6097, 9078

 The ascending order :,,
 The descending order :,,
 The greatest number is
 The smallest number is
 The sum of the two numbers = + =
 The difference = - =
(18) Use all the following digits to determine the values of the following:

a) 3, 7, 1, 8, 9
 The greatest different digit number is
 The smallest different digit number is
 The sum of the two numbers = + =
 The difference = - =

b) 2, 0, 9, 6, 5
 The greatest different digit number is
 The smallest different digit number is
 The sum of the two numbers = + =
 The difference = - =

c) 8, 7, 6, 1, 3
 The greatest different digit number is
 The smallest different digit number is
 The sum of the two numbers = + =
 The difference = - =

d) 5, 1, 7, 2, 6
 The greatest different digit number is
 The smallest different digit number is
 The sum of the two numbers = + =
 The difference = - =
e) 6, 2, 8, 1, 7

The greatest different digit number is ________________.
The smallest different digit number is ________________.
The sum of the two numbers = ________________ + ________________ = ________________.
The difference = ________________ - ________________ = ________________.

(19) If the cash donations for a hospital (57357) is 40932 pounds in one week and 39798 pounds in another week. Find the total donations in the two weeks.

The total = ________________ = ________________ pounds.

(20) 37939 and 47989 housing units are built in one governorates in two successive year. Find the sum of units built in the two years.

The sum = ___________ + ___________ = ___________ unit.

(21) A shop sold goods for 54786 pounds in one day and for 44243 pounds in the next day. What is the total sales in the days?

The total sales = ________________ = ________________ people.
(22) Ihab bought a car for 22000 pounds, then he sold it with a loss of 6000 pounds. Find the selling price?

The selling price = ... = pounds

(23) If the tax department income from one organisation is 4578 pounds and from another organisation is 3719 pounds. Find the sum of incomes from the two organisations.

The sum = .. = pounds
(1) Complete:

1. The base of the cylinder is in the form a ________
2. The number of the faces of a cube = ________
3. The number of the edges of the cuboid = ________
4. The solid which has no vertices, has two circular bases is ________
5. The measure of the acute angle ________ the measure of the obtuse angle (< or > or =).
6. The type of the angle whose measure 98° is ________ (< or > or =)
7. The type of the angle whose measure 150° is ________
8. The measure of the right angle ________ the measure of the obtuse (< or > or =)
9. The number of the vertices of a cube = ________ (< or > or =)
10. The measure of the right angle = ________
11. The number of the vertices of a cube ________ the number of the vertices of a cuboid (< or > or =)
12. The number of the edges of a cube = ________
13. The type of the angle whose measure 120° is ________
14. The type of the angle whose measure 90° is ________

(2) Draw ABC of measure 60° then determine its type:
(3) Draw the square XYZL of side length 5 unit long on the opposite lattice, (consider the side length of the small square as a unit length).

(4) In the opposite rectangle draw the line. Segment AB of length 5cm

(5) Use the protractor to measure each of the following angles, then determine the type of each one

<table>
<thead>
<tr>
<th>Angle</th>
<th>Its measure</th>
<th>Its type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>..........................</td>
<td></td>
</tr>
<tr>
<td></td>
<td>..........................</td>
<td></td>
</tr>
<tr>
<td></td>
<td>..........................</td>
<td></td>
</tr>
</tbody>
</table>

(6) Draw a congruent figure to the given figure.
Firstly: Complete:

1. Complete in the same pattern: 98970, 98860,, 98530
2. 7 + 40 + 500 + 3000 + 20000 =
3. 6 × 9 = 6 × 3 ×
4. 65432 + = 90000
5. (4793 +) + 1752 = 4793 + (5951 + 1752)
6. The solid which has 6 faces, each face is in the form of a square is

7. Use the angle \(\angle L = 30^\circ\), the measure of \(\angle ABC\) =
Secondly: Choose the correct answer:

8. Twenty five thousand and fifteen:
 a) 1515 b) 25015 c) 2515

9. The measure of angle ABC =°

10. Which of the following is arranged in an ascending order:
 a) 76543, 76453, 76345, 76435
 b) 44923, 54822, 21712, 25346
 c) 28654, 47564, 52943, 62981

11. \(\frac{12}{5} = \ldots \)
 a) 3 b) 4 c) 5

12. After folding the opposite figure and glue it gives a
 a) cube b) cuboid
 c) prism
13. In the opposite figure.
 Complete:
 The side length of square =unit length
 a) 4
 b) 5
 c) 8

14. \((4 \times 5) + 4 = \quad 4 \times 6\)
 a) >
 b) <
 c) =

15. \(1632 + 2435 = \quad\)
 a) 67 + 40
 b) 76 + 400
 c) 7 + 60 + 4000

16. Which of the following statement is correct:
 a) 4167 < 4079
 b) 2974 < 3947
 c) 8936 = 9396

17. A number consists of 4 digits its unit 8, tens half units, hundreds half tens, thousands half hundreds. The number is
 a) 2148
 b) 2418
 c) 1248
18. Mazen bought a refrigerator for L.E 3220 and T.V for 740. The total Mazen paid is ………………….
 a) 3960 b) 3220 c) 2480

19. A father wants to distribute 24 bars of chocolate among his 4 sons, so each of them will take required:
 a) addition b) multiplication c) division

Thirdly: Find the results:

20. Samir bought 7 colored boxes, each contains 6 pens, how many pens are there in these 7 boxes?
 Number of pens = ……………………… = ………………………

21. The opposite figure is:
 a) Its name is ………………………
 b) Number of its vertices = ………………………
 c) Number of its faces = ………………………
 d) Number of edges = ………………………

22. (a) Add: 2148 + 1435 = ………………
 (b) Subtract: 3987 - 1652 = ……………
Firstly: Choose the correct answer:

1. The smallest number formed from the digits (5, 3, 2, 1 and is 8) ...
 a) 5321 b) 85321 c) 12358

2. Shaimaa has L.E 2120 and she wants to buy a refrigerator for L.E 3220. The previous operation is:
 a) adding b) subtracting c) multiplying

3. The number of edges of a cube = ...
 a) 6 b) 8 c) 12

4. The number opposite is: ...
 a) 6430 b) 6403 c) 3046
5. Adel has 5 coins of L.E 1, 7 note bank of L.E 10 and 3 note bank of L.E 100, then the total …………………
 a) 375 b) 735 c) 573

6. 24 + 6 ………………… 2 × 6
 a) > b) < c) =

7. (654 + 7500) + 3664 = 6541 + (7500 + ……………………)
 a) 4366 b) 6643 c) 3664

8. Twenty four thousands, seven hundreds and one is written as …………………
 a) 24917 b) 24701 c) 24107

9. ………………… × 3 > 6 × 3
 a) 4 b) 5 c) 8

10. When dividing the number represented in the opposite figure by 7, the result is …………………
 a) 2 b) 6 c) 8
11. The angle is straight when the clock is:
 a) 2 O’clock b) 6 O’clock c) 3 O’clock

12. The triangular pyramid its base on the shape of:
 a) Triangle b) Square c) Circle

Secondly:

13. Complete: The opposite shape \[\text{A} \quad \text{B} \quad \text{C} \] represents angle its type

14. Complete in the same pattern:
 9700, 8700, 7700,

15. \(47386 + 52613 = \)

16. The number that must be added to 7435 for the result be 8276 is

17. \(81 \div 9 = \)

18. \(6 + 6 + 6 + 6 > 5 \times \)

19. Third: After folding the opposite figure and glue it gives a
20. Draw a rectangle of dimensions 3 cm, 4 cm

21. Asmaa bought 7 rabbits, she wants to count their legs. How she can do this without using the addition operation?

22. a) Add: 3287 + 2732 =
 b) Subtract: 6417 – 3519 =
1. Choose the correct answer:

 \[2 + 4 \times 10 + 5 \times 100 + 2 \times 1000 = \]

 a) 5242
 b) 4252
 c) 2542

2. The name of a supermarket in a day was 5817 and the outcome in the same day was 3356, to know the project we do:
 a) adding
 b) subtracting
 c) multiplication

3. 4237 + 1159 near to:
 a) 6000
 b) 5000
 c) 4000

4. 24 ÷ 4 > \[\times 2 \]
 a) 2
 b) 3
 c) 6
5. Ahmed saves L.E 3423 and his brother Aly L.E 2632 then what they save to gather is ____________________________
 a) 60560 b) 50650 c) 60550

6. \((6 \times 100) + (6 \times 9) = \) ____________________________
 a) 564 b) 654 c) 645

7. \((2721 + 6582) + 1730 = 2721 + (6582 + \) ____________________________
 a) 3170 b) 1730 c) 1703

8. The remainder of subtracting 38254 from 59223 = ____________________________
 a) 29069 b) 21031 c) 20969

9. \(5 \times 9 = 40 + \ldots\)
 a) 5 b) 9 c) 1

10. Number of edges of [image] Number of vertices of [image]
 a) > b) < c) =

11. The base of the cylinder is:
 a) triangle b) square c) circle
12. The angle of measure 48° is ……………… angle
 a) an acute b) a right c) an obtuse

Secondly: Complete

13. 74835 = 835 + 4000 + ……………………

14. Complete in the same pattern:
 4386, 4387, 4388, ……………………, ……………………

15. 36 + …………………………. < 6 × 7

16. The result of 1064 + 1036 = …………………………..

17. The number of triangles = ………………………. triangle

18. The solid which has six square faces is called ………………………………..

19. The opposite solid is called ………………………………..
20. Hazem bought some food for P.T 6224 and some fruits for P.T 3176. Find the total which Hazem paid.

21. Use the protractor, ruler draw \angle ABC of measure 75°.

22. A box of spread cheese has 8 pieces triangles. What is the number of triangles in 9 boxes?

The number of pieces in 9 boxes =

=
<table>
<thead>
<tr>
<th>المواصفات الفنية:</th>
</tr>
</thead>
<tbody>
<tr>
<td>رقم الكتاب:</td>
</tr>
<tr>
<td>مقاس الكتاب: 57 x 82 سم</td>
</tr>
<tr>
<td>لون: 4 لون</td>
</tr>
<tr>
<td>طبع المتن:</td>
</tr>
<tr>
<td>طبع الغلاف:</td>
</tr>
<tr>
<td>ورق المتن:</td>
</tr>
<tr>
<td>ورق الغلاف:</td>
</tr>
<tr>
<td>جم: 20</td>
</tr>
<tr>
<td>كويش: 200</td>
</tr>
<tr>
<td>صفحة: 140</td>
</tr>
</tbody>
</table>

http://elearning.moe.gov.eg
الأشراف برنتنج هاوس