A foreword to Teachers and Parents

Dear teachers and parents,

We are pleased to present you with this book as part of a developed chain of mathematics textbooks. For maximum benefit, please note the following:

1- Before solving the verbal problems, please read them out carefully to your pupils and make sure they are understood.

2- There are multiple correct methods of solution to the same problem. It is sufficient for you pupils to mention only one or some according to what is required in the problem. It is with these types of questions that we hope to develop our pupils' creativity.

3- An attempt has been made to remove barriers between mathematics and other areas of knowledge and practical life according to what has come to be known as "curriculum integration". If today's scientists are mainly concerned with "the unity of human knowledge", then the best time to start is the primary stage. Therefore, it is expected that every single detail in the book will be given attention and care even if it does not belong to "mathematics" in the narrow sense of the word.

4- Some affective aims have been included in this curriculum. This is achieved by forming attitudes towards some social issues (such as the over population) besides developing appreciation and interests towards the study of mathematics. Therefore, required discussions, comments, and other like responses should not be ignored under the pretext that they are not included in school tests.

5- It is not only the customary standards of education in Egypt that have been given apparent attention, but also modern trends in the teaching of mathematics. Among these are presenting comprehensive knowledge of numbers before details pertaining to place value and performing arithmetic operations.

6- In the course of designing this book, circumstances of Egyptian schools have been taken into consideration. Hence the use of measuring tools and the performance of practical experiments has been kept to a minimum.

7- There are activities and exercises at the end of each unit. The exercises are typical of the preplanned output of each unit. The activities, however, might sometimes exceed the contents of the unit with the purpose of reviving extra-curricular activities in mathematics. These, in support the output of the unit and can be viewed as enrichment activities at the same time.

May God guide us all to what is in the interest of our beloved country.

The authors
<table>
<thead>
<tr>
<th>Revision</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit one: Multiplication and division</td>
<td>7</td>
</tr>
<tr>
<td>Lesson 1: Multiplication table (9, 8, 7, 6)</td>
<td>8</td>
</tr>
<tr>
<td>Lesson 2: Division</td>
<td>15</td>
</tr>
<tr>
<td>Exercises on unit one</td>
<td>18</td>
</tr>
<tr>
<td>Activities on unit one</td>
<td>25</td>
</tr>
<tr>
<td>Unit two: Numbers up to 99999</td>
<td>27</td>
</tr>
<tr>
<td>Lesson 1: Thousands</td>
<td>28</td>
</tr>
<tr>
<td>Lesson 2: Ten thousands</td>
<td>37</td>
</tr>
<tr>
<td>Exercises on unit two</td>
<td>45</td>
</tr>
<tr>
<td>Activities on unit two</td>
<td>47</td>
</tr>
<tr>
<td>Unit three: Adding and subtracting up to no more than 99999</td>
<td>49</td>
</tr>
<tr>
<td>Lesson 1: Finding sum of two numbers</td>
<td>50</td>
</tr>
<tr>
<td>Lesson 2: properties of addition</td>
<td>56</td>
</tr>
<tr>
<td>Lesson 3: subtracting two numbers</td>
<td>58</td>
</tr>
<tr>
<td>Lesson 4: the relation between subtracting and adding</td>
<td>62</td>
</tr>
<tr>
<td>Exercises on unit three</td>
<td>65</td>
</tr>
<tr>
<td>Activities on unit three</td>
<td>71</td>
</tr>
<tr>
<td>Unit four: Geometry</td>
<td>73</td>
</tr>
<tr>
<td>Lesson 1: Solids</td>
<td>74</td>
</tr>
<tr>
<td>Lesson 2: Finding the length of a line segment by using ruler</td>
<td>76</td>
</tr>
<tr>
<td>Lesson 3: Geometric constructions</td>
<td>79</td>
</tr>
<tr>
<td>Lesson 4: Congruent of two geometric shapes</td>
<td>83</td>
</tr>
<tr>
<td>Lesson 5: Visual pattern (recognizing and building them)</td>
<td>88</td>
</tr>
<tr>
<td>Lesson 6: The angle</td>
<td>90</td>
</tr>
<tr>
<td>Exercises on unit four</td>
<td>97</td>
</tr>
<tr>
<td>Activities on unit four</td>
<td>99</td>
</tr>
<tr>
<td>General Exercises on the units</td>
<td>100</td>
</tr>
<tr>
<td>Model tests</td>
<td>119</td>
</tr>
</tbody>
</table>
Revision
(1) Find the result of each of the following:

(a) 465 + 23
(b) 784 + 208
(c) 365 - 52
(d) 537 - 418

\[
\begin{align*}
\text{Result:} & \quad 488 \\
\text{Result:} & \quad 1092 \\
\text{Result:} & \quad 313 \\
\text{Result:} & \quad 126 \\
\end{align*}
\]

(e) 4 \times 3
(f) 7 \times 4

\[
\begin{align*}
\text{Product:} & \quad 12 \\
\text{Product:} & \quad 28 \\
\end{align*}
\]

(2) Complete using (< or > or =):

(a) 218 + 97 ________ 218 + 79
(b) 600 - 115 ________ 600 - 116
(c) 3 \times 8 ________ 4 \times 6
(d) 12 ÷ 3 ________ 12 ÷ 4
(e) \frac{1}{5} ________ \frac{1}{4}

(3) Arrange in ascending order:

457, 547, 754, 574, 745

The order: ________, ________, ________, ________, ________

(4) Maryam bought a book for P.T 350 and the rest was P.T 150. How much money did Maryam give to the sales man?

Maryam gave the sales man = \[\text{P.T } 350 - \text{P.T } 150 = \text{P.T } 200\]

(5) Write the fraction which represents the shaded part:

\[
\begin{align*}
\text{Fraction:} & \quad \frac{1}{2} \\
\text{Fraction:} & \quad \frac{1}{4} \\
\text{Fraction:} & \quad \frac{1}{3} \\
\end{align*}
\]
(1) Complete the missing digits:

(a) \[3 \underline{2} \underline{} \underline{7}\]
(b) \[7 \underline{2} \underline{7}\]
(c) \[\underline{} \underline{} \underline{4}\]
(d) \[\underline{} \underline{} \underline{15}\]

\[\underline{5} \underline{0}\]
\[\underline{3} \underline{1}\]
\[\underline{2} \underline{1}\]

(2) Complete:

(a) \[4 + 4 = 4 \times \underline{}\]
(b) \[12 \div 2 = \underline{} \times 3\]
(c) The greatest number formed from digits 5, 8 and 2 is \[\underline{} \underline{} \underline{}\]
(d) The Shape is called \[\underline{} \underline{} \underline{}\]
(e) \[327, 324, 321, \underline{}, \underline{}, \underline{}, \underline{} \text{ (in the same pattern)}\]

(3) Dina bought a dress by L.E 185 and a shoes for L.E 120. Magdy bought a shirt for L.E 90 and a watch for L.E 235. Which of them pay more? Calculate the difference.

What Dina paid = \[\underline{}, \underline{}, \underline{}, \underline{} = \text{L.E} \underline{}\]

What Magdy paid = \[\underline{}, \underline{}, \underline{}, \underline{} = \text{L.E} \underline{}\]
(4) (a) If the length of the small square is the unit of length find the perimeter of:

Perimeter = ______ unit length Perimeter = ______ unit length

(b) Write the fraction which represent the shaded part.

(5) (a) Write the time:

(b) What is the sum?

The sum = L. E __________
(1) Choose the correct answer:
(a) The place value of 3 in the number 321 is ____ (units, tens, hundreds)
(b) 324 - 0 ____ 324 - 324 (>, <, =)
(c) 6 + 6 + 6 = ____ (6 × 3, 6 ÷ 3, 6 + 3)
(d) The shape ____ represents a ____ (straight line, ray, line segment)

(2) Complete:
(a) 24 ÷ ____ = 8
(b) 4 × ____ = 32
(c) The smallest number formed from 5, 6, 7 is ____
(d) 6 metre, 10 cm = ____ cm

(3) Complete using (> or < or =):
(a) 3 × 5 ____ 5 × 3
(b) 148 + 100 ____ 284
(c) 16 ÷ 2 ____ 16 ÷ 4
(d) \(\frac{1}{4} \) ____ \(\frac{1}{3} \)

(4) In one of the projects of planet trees in the streets there decided to plant 940 tree in a year. If they plant 450 tree up to now what is the remainder of the trees.

The remainder of the trees = ____________
(5) Colour according to the fraction:

\[\frac{1}{2} \quad \frac{1}{4} \]
Unit One
Multiplication and Division
Table (6, 7, 8, 9)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 × 0 =</td>
<td>1 × 0 =</td>
<td>2 × 0 =</td>
<td></td>
</tr>
<tr>
<td>0 × 1 =</td>
<td>1 × 1 =</td>
<td>2 × 1 =</td>
<td></td>
</tr>
<tr>
<td>0 × 2 =</td>
<td>1 × 2 =</td>
<td>2 × 2 =</td>
<td></td>
</tr>
<tr>
<td>0 × 3 =</td>
<td>1 × 3 =</td>
<td>2 × 3 =</td>
<td></td>
</tr>
<tr>
<td>0 × 4 =</td>
<td>1 × 4 =</td>
<td>2 × 4 =</td>
<td></td>
</tr>
<tr>
<td>0 × 5 =</td>
<td>1 × 5 =</td>
<td>2 × 5 =</td>
<td></td>
</tr>
<tr>
<td>0 × 6 =</td>
<td>1 × 6 =</td>
<td>2 × 6 =</td>
<td></td>
</tr>
<tr>
<td>0 × 7 =</td>
<td>1 × 7 =</td>
<td>2 × 7 =</td>
<td></td>
</tr>
<tr>
<td>0 × 8 =</td>
<td>1 × 8 =</td>
<td>2 × 8 =</td>
<td></td>
</tr>
<tr>
<td>0 × 9 =</td>
<td>1 × 9 =</td>
<td>2 × 9 =</td>
<td></td>
</tr>
<tr>
<td>3 × 0 =</td>
<td>4 × 0 =</td>
<td>5 × 0 =</td>
<td></td>
</tr>
<tr>
<td>3 × 1 =</td>
<td>4 × 1 =</td>
<td>5 × 1 =</td>
<td></td>
</tr>
<tr>
<td>3 × 2 =</td>
<td>4 × 2 =</td>
<td>5 × 2 =</td>
<td></td>
</tr>
<tr>
<td>3 × 3 =</td>
<td>4 × 3 =</td>
<td>5 × 3 =</td>
<td></td>
</tr>
<tr>
<td>3 × 4 =</td>
<td>4 × 4 =</td>
<td>5 × 4 =</td>
<td></td>
</tr>
<tr>
<td>3 × 5 =</td>
<td>4 × 5 =</td>
<td>5 × 5 =</td>
<td></td>
</tr>
<tr>
<td>3 × 6 =</td>
<td>4 × 6 =</td>
<td>5 × 6 =</td>
<td></td>
</tr>
<tr>
<td>3 × 7 =</td>
<td>4 × 7 =</td>
<td>5 × 7 =</td>
<td></td>
</tr>
<tr>
<td>3 × 8 =</td>
<td>4 × 8 =</td>
<td>5 × 8 =</td>
<td></td>
</tr>
<tr>
<td>3 × 9 =</td>
<td>4 × 9 =</td>
<td>5 × 9 =</td>
<td></td>
</tr>
</tbody>
</table>
First: Multiply 6 × a number or a number × 6:

(1) Complete:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6×1</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6×2</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6×3</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6×4</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6×5</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6×6</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6×7</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6×8</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6×9</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2) Complete:

(a) $6 \times \square = 24$
(b) $6 \times \square = 6$
(c) $6 \times \square = 30$
(d) $\frac{\times 7}{42}$
(e) $\frac{\times 6}{18}$
(f) $\frac{\times 6}{0}$

(3) Complete using (< or > or =):

(a) $6 + 6 \quad 6 \times 6$
(b) $6 \times 4 \quad 4 \times 6$
(c) $6 \times 0 \quad 6 + 0$
(d) $6 \times 6 \quad 66$
(e) $6 \times 8 \quad 42 + 6$
(f) $30 + 6 \quad 6 \times 5$
(4) A woman works 6 hours daily, for 5 days weakly. How many hours does the woman work weakly?

Number of hours = \[\text{Number of days} \times \text{Hours per day} \] = ________ hour.

(5) Said saves L.E 7 each month. How much money he saves in 6 months?

Said saves = \[\text{Number of months} \times \text{Money saved per month} \] = L.E ________

Second: Multiply 7 \times \text{a number or a number} \times 7:

(1) Complete:

\[
\begin{align*}
7 \times 1 &= \square \\
7 \times 2 &= \square \\
7 \times 3 &= \square \\
7 \times 4 &= \square \\
7 \times 5 &= \square \\
7 \times 6 &= \square \\
7 \times 7 &= \square \\
7 \times 8 &= \square \\
7 \times 9 &= \square
\end{align*}
\]

(2) Complete:

(a) \[\frac{\times 5}{35} \]
(b) \[\times \square = 49 \]
(c) \[\times 7 = \square \]
(d) \[\times \square = 7 \]
(3) If you know that the number of the days of the week is 7 days, complete as in the example:

Example: 3 weeks = 3 \times 7 = 21 days.

(a) 5 weeks = ____ \times ____ = ____ days.

(b) 7 weeks = ____ \times ____ = ____ days.

(c) 8 weeks = ____ \times ____ = ____ days.

(4) What the price of 7 sandwiches from each of...........?

<table>
<thead>
<tr>
<th>(a) beans</th>
<th>(b) eggs</th>
<th>(c) cheese</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(d) What is the cheapest kind of sandwiches

(e) What can you buy for 17 pounds from the shop?

(5) How many flowers are there in 8 bunches of flowers if each has 7 flowers?

The number of flowers in the bunches = ____ \times ____ = ____ flowers.
Third: Multiply $8 \times$ a number or a number $\times 8$:

(1) Complete:

$8 \times 1 = \boxed{8}$
$8 \times 2 = \boxed{16}$
$8 \times 3 = \boxed{24}$
$8 \times 4 = \boxed{32}$
$8 \times 5 = \boxed{40}$
$8 \times 6 = \boxed{48}$
$8 \times 7 = \boxed{56}$
$8 \times 8 = \boxed{64}$
$8 \times 9 = \boxed{72}$

(2) Complete each of the following:

(a)

\[1 \times 8 \]
\[7 \]
\[5 \]
\[48 \]

(b)

\[2 \]
\[+3 \]
\[\times 8 \]
\[+60 \]

(3) The shop owner divided each pizza into 8 pieces. What is the number of pieces of four pizzas?

The number of pieces in 4 pizzas = ____________

= ____________ triangular pieces.
(4) A box of spread cheese has 8 pieces triangles. What is the number of triangles in 9 boxes?
The number of pieces in 9 boxes =

(5) The pupils of one of the third primary classes stood in 5 lines with 8 pupils in each line. How many pupils are there in this class?
Number of the pupils =

Fourth: Multiply $9 \times$ a number or a number $\times 9$:
(1) you know that:

\[
\begin{align*}
6 & \times 9 = 54 \\
7 & \times 9 = 63 \\
8 & \times 9 = 72
\end{align*}
\]

\[
\begin{align*}
54 + 9 &= 63 \\
63 + 9 &= 72 \\
72 + 9 &= \text{(now)}
\end{align*}
\]

(2) Complete:

(a) $9 \times \square = 45$
(b) $8 \times \square = 72$
(c) $9 \times \square = \text{54}$

(d) $9 \times 9 = \square$
(e) $1 \times \square = 9$
(f) $3 \times \square = 27$
(3) Complete using (< or > or =):

(a) \[0 \times 9 \underline{} 9 + 0 \]
(b) \[6 \times 9 \underline{} 45 \]
(c) \[7 \times 8 \underline{} 8 \times 9 \]
(d) \[9 \times 9 \underline{} 80 \]
(e) \[7 \times 9 \underline{} 54 + 9 \]

(4) Girgis bought seven books for 9 pounds each. What is the price of all books?

\[
\text{The books cost} = \underline{} = \underline{} \text{ pounds.}
\]

(5) A box of colouring pens has 9 pens. What is the number of pens in the 9 boxes?

\[
\text{The number of pens in 9 boxes} = \underline{} = \underline{}
\]
Lesson Two

Division

Last year you have studied that the division operation is the converse operation for multiplication.

For example:

\[3 \times 9 = 27 \]
\[27 \div 3 = 9 \]

\[27 \div 9 = 3 \]

(1) Complete as the example:

<table>
<thead>
<tr>
<th>Example</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6 \times 7 = 42</td>
<td>7 \times 8 = 56</td>
</tr>
<tr>
<td>42 \div 6 = 7</td>
<td>56 \div ___ = 7</td>
</tr>
<tr>
<td>42 \div 7 = 6</td>
<td>56 \div ___ = 8</td>
</tr>
<tr>
<td>8 \times 9 = 72</td>
<td>7 \times ___ = 49</td>
</tr>
<tr>
<td>___ \div 8 = 9</td>
<td>49 \div 7 = ___</td>
</tr>
<tr>
<td>72 \div 9 = ___</td>
<td></td>
</tr>
</tbody>
</table>
Unit One

(2) Find the result:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>9×9</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>$7 \div 1$</td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>$0 \div 2$</td>
<td></td>
</tr>
<tr>
<td>(d)</td>
<td>$1 \div 1$</td>
<td></td>
</tr>
<tr>
<td>(e)</td>
<td>$0 \div 1$</td>
<td></td>
</tr>
</tbody>
</table>

(3) Find the result:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>$45 \div 9$</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>$54 \div 9$</td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>$36 \div 6$</td>
<td></td>
</tr>
<tr>
<td>(d)</td>
<td>$8 \div 1$</td>
<td></td>
</tr>
<tr>
<td>(e)</td>
<td>$7 \div 7$</td>
<td></td>
</tr>
<tr>
<td>(f)</td>
<td>$0 \div 9$</td>
<td></td>
</tr>
<tr>
<td>(g)</td>
<td>$48 \div 8$</td>
<td></td>
</tr>
<tr>
<td>(h)</td>
<td>$81 \div 9$</td>
<td></td>
</tr>
<tr>
<td>(i)</td>
<td>$64 \div 8$</td>
<td></td>
</tr>
</tbody>
</table>

(4) Find the result:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>$3 \div 21$</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>$4 \div 32$</td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>$5 \div 30$</td>
<td></td>
</tr>
<tr>
<td>(d)</td>
<td>$6 \div 42$</td>
<td></td>
</tr>
<tr>
<td>(e)</td>
<td>$8 \div 72$</td>
<td></td>
</tr>
<tr>
<td>(f)</td>
<td>$7 \div 49$</td>
<td></td>
</tr>
<tr>
<td>(g)</td>
<td>$7 \div 56$</td>
<td></td>
</tr>
<tr>
<td>(h)</td>
<td>$9 \div 63$</td>
<td></td>
</tr>
<tr>
<td>(i)</td>
<td>$6 \div 48$</td>
<td></td>
</tr>
</tbody>
</table>

(5) Complete:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>$15 + 5$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>$28 + 4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>$18 + 3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d)</td>
<td>$48 + $</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e)</td>
<td>$56 + $</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f)</td>
<td>$27 + $</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g)</td>
<td>$ + 6$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(h)</td>
<td>$ + 7$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i)</td>
<td>$ + 8$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(6) Complete using (< or > or =)

(a) $42 \div 6 \square 42 \div 7$
(b) $9 \div 3 \square 9 \times 3$
(c) $8 \div 1 \square 8 \div 8$
(d) $24 \div 8 \square 21 \div 7$
(e) $0 \div 7 \square 0 \div 6$

(7) Complete using (+ or – or × or ÷) :

(a) $3 \times 4 = 10 \square 2$
(b) $3 \times 8 = 6 \square 4$
(c) $18 \div 2 = 3 \square 3$
(d) $1 \times 7 = 49 \square 7$
(e) $16 \div 2 = 32 \square 4$
(f) $6 \square 5 = 7 \div 7$
(g) $36 \div 6 = 2 \square 3$
(h) $5 \square 8 = 45 \div 5$

(8) There are 42 pupils in the class. The teacher wanted to distribute it into 6 groups. How many pupils are there in each group?

number of pupils = _______ = _______ pupil

(9) There is a box in front of Hossam. It has 45 balls. He wants to put 9 balls in each box. How many boxes does he need?

how many boxes does he need? = _______

Number of boxes = _______ box

(10) The headmaster of a school distributes 48 pencils, equally among 6 pupils who got full marks in one of maths tests. How many pencils can each pupil take?

number of pencils which each pupil can take = _______ pencil
Exercises on unit one

(1) Find the result:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>4 \times 7</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><code>9 \times 9</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>7 \times 9</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><code>8 \times 8</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><code>3 \times 8</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><code>6 \times 5</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td><code>4 \times 9</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td><code>8 \times 6</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td><code>8 \times 9</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td><code>6 \times 4</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td><code>7 \times 6</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td><code>9 \times 0</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td><code>6 \times 8</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td><code>9 \times 6</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td><code>7 \times 8</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td><code>7 \times 5</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td><code>3 \times 6</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td><code>8 \times 7</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td><code>6 \times 9</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td><code>5 \times 6</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td><code>9 \times 7</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td><code>6 \times 7</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td><code>2 \times 8</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td><code>8 \times 5</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td><code>4 \times 8</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td><code>5 \times 9</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td><code>7 \times 7</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td><code>3 \times 9</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td><code>9 \times 6</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td><code>9 \times 8</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td><code>0 \times 8</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td><code>5 \times 7</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td><code>6 \times 6</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td><code>8 \times 9</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td><code>7 \times 4</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td><code>8 \times 3</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td><code>4 \times 6</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td><code>3 \times 7</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td><code>9 \times 4</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td><code>5 \times 5</code></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(2) find the result:

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
<th>(f)</th>
<th>(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>× 8</td>
<td>× 6</td>
<td>× 5</td>
<td>× 0</td>
<td>× 4</td>
<td>× 9</td>
<td>× 7</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>5</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>× 3</td>
<td>× 7</td>
<td>× 5</td>
<td>× 4</td>
<td>× 8</td>
<td>× 2</td>
<td>× 6</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>× 9</td>
<td>× 5</td>
<td>× 6</td>
<td>× 8</td>
<td>× 3</td>
<td>× 7</td>
<td>× 9</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>× 8</td>
<td>× 5</td>
<td>× 9</td>
<td>× 6</td>
<td>× 7</td>
<td>× 7</td>
<td>× 6</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>5</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>× 4</td>
<td>× 9</td>
<td>× 7</td>
<td>× 8</td>
<td>× 3</td>
<td>× 6</td>
<td>× 4</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>× 8</td>
<td>× 3</td>
<td>× 9</td>
<td>× 6</td>
<td>× 4</td>
<td>× 8</td>
<td>× 7</td>
</tr>
</tbody>
</table>
Unit One

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$81 \div 9 = \square$</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$35 \div 7 = \square$</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$18 \div 3 = \square$</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$56 \div 8 = \square$</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$54 \div 6 = \square$</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>$30 \div 5 = \square$</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>$63 \div 9 = \square$</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>$27 \div 3 = \square$</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>$49 \div 7 = \square$</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>$45 \div 5 = \square$</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>$32 \div 4 = \square$</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>$40 \div 8 = \square$</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>$16 \div 2 = \square$</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>$42 \div 6 = \square$</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>$56 \div 7 = \square$</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>$72 \div 8 = \square$</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>$36 \div 6 = \square$</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>$8 \div 8 = \square$</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>$48 \div 6 = \square$</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>$0 \div 7 = \square$</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>$42 \div 7 = \square$</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>$24 \div 6 = \square$</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>$72 \div 9 = \square$</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>$40 \div 5 = \square$</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>$48 \div 8 = \square$</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>$28 \div 4 = \square$</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>$45 \div 9 = \square$</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>$63 \div 7 = \square$</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>$64 \div 8 = \square$</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>$24 \div 3 = \square$</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>$30 \div 6 = \square$</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>$36 \div 4 = \square$</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>$35 \div 5 = \square$</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>$54 \div 9 = \square$</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>$32 \div 8 = \square$</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>$21 \div 3 = \square$</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>$36 \div 9 = \square$</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>$24 \div 4 = \square$</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>$28 \div 7 = \square$</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>$25 \div 5 = \square$</td>
<td></td>
</tr>
</tbody>
</table>
(4) Find the result:

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6√30</td>
<td>7√42</td>
<td>2√18</td>
<td>8√40</td>
</tr>
<tr>
<td>2</td>
<td>6√36</td>
<td>8√24</td>
<td>4√16</td>
<td>5√25</td>
</tr>
<tr>
<td>3</td>
<td>8√48</td>
<td>9√63</td>
<td>9√36</td>
<td>3√18</td>
</tr>
<tr>
<td>4</td>
<td>3√27</td>
<td>8√56</td>
<td>9√72</td>
<td>4√24</td>
</tr>
<tr>
<td>5</td>
<td>7√35</td>
<td>8√64</td>
<td>9√81</td>
<td>8√32</td>
</tr>
<tr>
<td>6</td>
<td>7√49</td>
<td>9√45</td>
<td>7√28</td>
<td>9√54</td>
</tr>
</tbody>
</table>
(5) Complete:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$5 \times \square = 45$</td>
<td>17</td>
<td>$\square \times 8 = 56$</td>
</tr>
<tr>
<td>2</td>
<td>$\square \times 3 = 18$</td>
<td>18</td>
<td>$4 \times \square = 16$</td>
</tr>
<tr>
<td>3</td>
<td>$6 \times \square = 30$</td>
<td>19</td>
<td>$\square \times 5 = 40$</td>
</tr>
<tr>
<td>4</td>
<td>$7 \times \square = 42$</td>
<td>20</td>
<td>$9 \times \square = 81$</td>
</tr>
<tr>
<td>5</td>
<td>$\square \times 7 = 28$</td>
<td>21</td>
<td>$\square \times 9 = 18$</td>
</tr>
<tr>
<td>6</td>
<td>$8 \times \square = 24$</td>
<td>22</td>
<td>$\square \times 6 = 54$</td>
</tr>
<tr>
<td>7</td>
<td>$\square \times 4 = 24$</td>
<td>23</td>
<td>$6 \times \square = 48$</td>
</tr>
<tr>
<td>8</td>
<td>$\square \times 8 = 32$</td>
<td>24</td>
<td>$\square \times 7 = 49$</td>
</tr>
<tr>
<td>9</td>
<td>$9 \times \square = 63$</td>
<td>25</td>
<td>$27 + \square = 9$</td>
</tr>
<tr>
<td>10</td>
<td>$\square \times 8 = 64$</td>
<td>26</td>
<td>$20 + \square = 4$</td>
</tr>
<tr>
<td>11</td>
<td>$7 \times \square = 35$</td>
<td>27</td>
<td>$16 + \square = 4$</td>
</tr>
<tr>
<td>12</td>
<td>$\square \times 6 = 36$</td>
<td>28</td>
<td>$7 + 1 = \square$</td>
</tr>
<tr>
<td>13</td>
<td>$\square \times 6 = 24$</td>
<td>29</td>
<td>$30 + \square = 6$</td>
</tr>
<tr>
<td>14</td>
<td>$4 \times \square = 36$</td>
<td>30</td>
<td>$\square + 7 = 3$</td>
</tr>
<tr>
<td>15</td>
<td>$\square \times 3 = 27$</td>
<td>31</td>
<td>$\square + 7 = 7$</td>
</tr>
<tr>
<td>16</td>
<td>$8 \times \square = 72$</td>
<td>32</td>
<td>$3 + \square = 1$</td>
</tr>
<tr>
<td>33</td>
<td>$18 \div \square = 9$</td>
<td>34</td>
<td>$63 \div \square = 7$</td>
</tr>
<tr>
<td>35</td>
<td>$28 \div \square = 4$</td>
<td>36</td>
<td>$\square \div 6 = 0$</td>
</tr>
<tr>
<td>37</td>
<td>$56 \div \square = 7$</td>
<td>38</td>
<td>$15 \div \square = 3$</td>
</tr>
<tr>
<td>39</td>
<td>$54 \div \square = 6$</td>
<td>40</td>
<td>$2 \div \square = 2$</td>
</tr>
<tr>
<td>41</td>
<td>$64 \div \square = 8$</td>
<td>42</td>
<td>$12 \div \square = 4$</td>
</tr>
<tr>
<td>43</td>
<td>$81 \div \square = 9$</td>
<td>44</td>
<td>$\square \div 8 = 1$</td>
</tr>
<tr>
<td>45</td>
<td>$42 \div \square = 7$</td>
<td>46</td>
<td>$\square \div 7 = 7$</td>
</tr>
<tr>
<td>47</td>
<td>$18 \div \square = 3$</td>
<td>48</td>
<td>$\square \div 8 = 9$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>$6 \times 9 = 9 \square 6$</td>
<td>13</td>
<td>$81 \square 9 = 27 \div 3$</td>
</tr>
<tr>
<td>2</td>
<td>$63 \square 9 = 7$</td>
<td>14</td>
<td>$4 \times 7 \square 32 \square 4$</td>
</tr>
<tr>
<td>3</td>
<td>$64 \div 8 = 48 \square 6$</td>
<td>15</td>
<td>$28 \div 4 = 42 \square 6$</td>
</tr>
<tr>
<td>4</td>
<td>$4 \div 2 = 8 \square 4$</td>
<td>16</td>
<td>$7 \square 7 = 0 \times 7$</td>
</tr>
<tr>
<td>5</td>
<td>$32 \div 4 = 4 \square 2$</td>
<td>17</td>
<td>$2 \times 9 = 21 \square 3$</td>
</tr>
<tr>
<td>6</td>
<td>$72 \div 8 = 5 \square 4$</td>
<td>18</td>
<td>$24 \square 4 = 30 \div 5$</td>
</tr>
<tr>
<td>7</td>
<td>$6 \square 4 = 8 \times 3$</td>
<td>19</td>
<td>$56 \square 8 = 21 \div 3$</td>
</tr>
<tr>
<td>8</td>
<td>$8 \div 8 = 4 \square 4$</td>
<td>20</td>
<td>$4 \times 2 = 64 \square 8$</td>
</tr>
<tr>
<td>9</td>
<td>$2 \square 3 = 15 \div 3$</td>
<td>21</td>
<td>$35 \square 5 = 10 - 3$</td>
</tr>
<tr>
<td>10</td>
<td>$3 \square 2 = 48 \div 8$</td>
<td>22</td>
<td>$18 \square 2 = 27 \div 3$</td>
</tr>
<tr>
<td>11</td>
<td>$6 \square 3 = 3 \times 3$</td>
<td>23</td>
<td>$3 \square 8 = 6 \times 4$</td>
</tr>
<tr>
<td>12</td>
<td>$9 \square 3 = 6 \times 2$</td>
<td>24</td>
<td>$4 \square 5 = 18 \div 2$</td>
</tr>
</tbody>
</table>
(7) In one of the parties, there is a table with 4 rows of plates each row has 8 plates. How many plates are there on the table?

Number of plates = _________________

= _________________

(8) A woman puts each 5 pieces of cake in one plate. How many pieces of cakes does she put in 6 plates?

number of pieces = _________________ = _________________

(9) A tin of cheese weighs 7 Kg what is the weight of 9 tins?

the weight of tins = _________________ = ________________ Kg

(10) A father distributes a sum of 27 pounds equally among his three sons. what is the share of each one of them?

A share of each one = _________________ = ________________ Pounds.

(11) Huda bought 6 notebooks for 48 pounds. what is the price of each one of them?

the price of a note book = _________________ = ________________ pounds.
(1) Multiply the number in the centre of the smaller circle by the numbers around this circle, then write the results:

- $4 \times 6 = 24$
- 5×7
- 35
- $5 \times 8 = 40$
- $6 \times 5 = 30$
- 4×6

(2) Use the different coloured pens to colour the small rectangles which have the same results by the same colour, then answer the questions below:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3×8</td>
<td>$5 \div 1$</td>
<td>3×2</td>
<td>3×3</td>
<td>$54 \div 9$</td>
<td></td>
</tr>
<tr>
<td>1×9</td>
<td>$36 \div 6$</td>
<td>$63 \div 7$</td>
<td>5×1</td>
<td>$48 \div 8$</td>
<td></td>
</tr>
<tr>
<td>$27 \div 3$</td>
<td>$25 \div 5$</td>
<td>$30 \div 6$</td>
<td>4×6</td>
<td>2×3</td>
<td></td>
</tr>
</tbody>
</table>

(a) How many colours does you use?

(b) Add the times of using each colour to get the total number of the rectangles?
Sami found a pattern from table (4) as:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>x 4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>28</td>
<td>32</td>
<td>36</td>
</tr>
</tbody>
</table>

The pattern is: 4, 8, 2, 6, 0. (Notice the unit digit)

try to find a pattern for table (6) by adding the digits of the number in each answer, then write this pattern.

<table>
<thead>
<tr>
<th>table 6</th>
<th>the sum of the digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 × 6 = 6</td>
<td>6 = 6</td>
</tr>
<tr>
<td>2 × 6 = 12</td>
<td>1 + 2 = 3</td>
</tr>
<tr>
<td>3 × 6 = 18</td>
<td>8 + 1 = 9</td>
</tr>
<tr>
<td>4 × 6 =</td>
<td></td>
</tr>
<tr>
<td>5 × 6 =</td>
<td></td>
</tr>
<tr>
<td>6 × 6 =</td>
<td></td>
</tr>
<tr>
<td>7 × 6 =</td>
<td></td>
</tr>
<tr>
<td>8 × 6 = 48</td>
<td>8 + 4 = 12 → 2 + 1 = 3</td>
</tr>
<tr>
<td>9 × 6 =</td>
<td></td>
</tr>
</tbody>
</table>

the pattern is:
A teacher asks the pupils to express the number 1000 by different ways:

- Ahmed answered: $999 + 1$
- Fatma answered: $500 + 500$
- Zeinab answered: 10 groups of

Now Youssef asks his teacher:

Is the sum of LE 1000 equals 10 papers of 100 bank note?

The teacher: yes.
and when Youssef back to his house, his father asked him: How many papers of 200 bank note does the previous sum contain?:

Youssef:

5 papers of 200 bank note.

Notice:

\[999 + 1 = 1000 \]

this number is read as “one thousand”.

and it can be represented as in the opposite figure:

(1) Complete as in the example

\[
\begin{align*}
1000 &= 900 + 100 \\
1000 &= 800 + \quad \quad \\
1000 &= 700 + \quad \quad \\
1000 &= 600 + \quad \quad \\
1000 &= 500 + \quad \quad \\
\end{align*}
\]
(2) Write the number:

(3) Complete:

992, 991, ____, 995, 994, ____, 997, ____, 1000, 999
1003, 1002, 1001, ____, 1006, ____, 1008, ____, 1010
1011, ____, ____, ____, ____, 1018, 1017, ____, 1020
____, 1023, 1022, ____, ____, ____, ____, 1029, ____
1031, ____, ____, 1035, 1034, ____, ____, ____, 1040

(4) Write in digits the following numbers:

Seven thousands and eighty four: ____________________________
Three thousands five hundreds and nine: ______________________
Two thousands, six hundreds and seventy:

Four thousands and seven:

(5) Read the following numbers, then write it as the example:

Example: 995 Nine hundreds and ninety five.

2153 Two thousands, one hundred and fifty three.

6466
1047
978
3007
4499

(6) Complete:

2000, 1900, 1800, 1700, 1600, 1500, 1400, 1300, 1200, 1100, 1000,
2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000,
3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900,
4200, 4100, 4000, 3900, 3800, 3700, 3600, 3500, 3400, 3300,
4700, 4600, 4500, 4400, 4300, 4200, 4100, 4000, 3900, 3800,
5000, 4900, 4800, 4700, 4600, 4500, 4400, 4300, 4200, 4100,
5100, 5200, 5300, 5400, 5500, 5600, 5700, 5800, 5900, 6000

(7) Complete with respect to the original number:

<table>
<thead>
<tr>
<th>Number</th>
<th>add 1</th>
<th>add 10</th>
<th>add 100</th>
<th>add 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>482</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2165</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4759</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7834</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(8) Complete:

<table>
<thead>
<tr>
<th>Number</th>
<th>Subtract 1</th>
<th>Subtract 10</th>
<th>Subtract 100</th>
<th>Subtract 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>9800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6453</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7984</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1236</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2045</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(9) Complete in same pattern:

3905, 3910, ______, ______, 3925, ______, ______
2814, 2824, ______, 2844, ______, ______
8000, 7500, 7000, ______, ______, ______
9417, 9437, ______, 9477, ______, ______

(10) Complete as the example:

Example: 6457 = 7 + 50 + 400 + 6000
4925 = 5 + 20 + ______ + ______
3781 = 1 + ______ + 700 + ______
9183 = ______ + ______ + ______ + ______
4506 = ______ + ______ + ______ + ______
3003 = ______ + ______ + ______ + ______

(11) Complete as the example:

8456 = 6 + 50 + 400 + 8000
_______ = 7 + 300 + 4000
_______ = 3 + 9000
4, 5, 2, 8 tens
2 2 4 3
7 1 0 2
5 6 2 9

(13) Complete according to the place value as the example:

<table>
<thead>
<tr>
<th>Number</th>
<th>Units</th>
<th>Tens</th>
<th>Hundreds</th>
<th>Thousand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>4528</td>
<td>8</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>9807</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2143</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5664</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(14) Complete (<, = or >)

4167 ______ 4097 1253 ______ 1254
2947 ______ 1947 9002 ______ 9002
6754 ______ 6751 8936 ______ 8937

(15) Arrange the following sets of numbers in ascending then descending order:

5449, 6204, 2917, 3028, 3009

Ascending order: ______, ______, ______, ______, ______

Descending: ______, ______, ______, ______, ______
1224, 7639, 8420, 999, 4778

Ascending order: __________, __________, __________, __________, __________
Descending: __________, __________, __________, __________, __________

(16) Join the card that have the same number:

\[
\begin{align*}
67 + 7000 & \quad 7 + 7600 & \quad 7670 \\
7607 & \quad 7067 & \quad 670 + 7000
\end{align*}
\]

(17) Write the following numbers in its places on number line:

1000 \quad 1500 \quad 1900 \quad 1200 \quad 2000

(18) Complete:

\[
\begin{align*}
10 + 4532 + 5023 + 7900 + 100 & = 8052 + 1607 \\
& = 9659
\end{align*}
\]
(19) Recognize the rule, then complete the table:

<table>
<thead>
<tr>
<th>7770</th>
<th>7780</th>
<th>7790</th>
</tr>
</thead>
<tbody>
<tr>
<td>7870</td>
<td></td>
<td>7910</td>
</tr>
<tr>
<td>7970</td>
<td></td>
<td>8020</td>
</tr>
</tbody>
</table>
<pre><code> | | 8100 |
</code></pre>

(20) Write the smallest and greatest number using all the digits in each case:

4 7 5 3
Smallest number: ____________________________
Greatest number: ____________________________

2 9 6 6
Smallest number: ____________________________
Greatest number: ____________________________

6 5 1 8
Smallest number: ____________________________
Greatest number: ____________________________

(21) The arrow means smaller than, then write the number in the suitable rectangles:

4732 , 4237 , 7432 , 7423

4327

4372

Akhbar Press
Mathematics For Primary 3 - First Term
(22) If the arrow means «greater than», then write the numbers in the suitable rectangles:

9083, 9803, 9308, 9380

9883 → 9838

(23) What is the greatest four digits number?
What is the smallest four digits number?
What is the greatest different four digits number?
What is the smallest different four digits number?
What is the greatest different four digits number and its unit is 6?
What is the greatest different four digits number and its unit is 7?

(24) Which of the following sets of numbers are arranged ascendingly

a) 4721, 5721, 6721, 7721
b) 6025, 5034, 4027, 3620
c) 5440, 1732, 7165, 5423
d) 5621, 1293, 6330, 1257
Lesson Two

ten thousands

Notice:
9999 + 1 = 10000
this number is read ((ten thousands))

\[
\begin{array}{c|c|c|c|c}
\text{ten} & \text{thousands} & \text{hundreds} & \text{tens} & \text{units} \\
\hline
1 & 0 & 0 & 0 & 0 \\
\end{array}
\]

this number can be shown on the abacus as in the figure:

Now: the teacher to his pupils 10 000
who can express the number 10 000 by different ways?
the answers:
- Tarek: 9999 + 1
- Hoda: 10 groups of 1000
- Adel: 5000 + 5000
- Reda: the smallest 5-digit number

(1) Write the numbers:

- \[
\begin{array}{c|c|c|c|c}
\text{ten} & \text{thousands} & \text{hundreds} & \text{tens} & \text{units} \\
\hline
 _ & _ & _ & _ & _ \\
\end{array}
\]

- \[
\begin{array}{c|c|c|c|c}
\text{ten} & \text{thousands} & \text{hundreds} & \text{tens} & \text{units} \\
\hline
 _ & _ & _ & _ & _ \\
\end{array}
\]

- \[
\begin{array}{c|c|c|c|c}
\text{ten} & \text{thousands} & \text{hundreds} & \text{tens} & \text{units} \\
\hline
 _ & _ & _ & _ & _ \\
\end{array}
\]

- \[
\begin{array}{c|c|c|c|c}
\text{ten} & \text{thousands} & \text{hundreds} & \text{tens} & \text{units} \\
\hline
 _ & _ & _ & _ & _ \\
\end{array}
\]
(2) Complete the following tables:

<table>
<thead>
<tr>
<th>52141</th>
<th>52142</th>
<th>52143</th>
<th>52144</th>
<th>52145</th>
</tr>
</thead>
<tbody>
<tr>
<td>52146</td>
<td></td>
<td></td>
<td></td>
<td>52150</td>
</tr>
<tr>
<td></td>
<td>52153</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76920</td>
<td>76930</td>
<td>76940</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76970</td>
<td></td>
<td>76990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77020</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(3) Write in digits:

- Seventy two thousands, five hundreds and thirty
- Fifty thousands, three hundreds and society four
- Twenty four thousands, seven hundreds and one
- Ten thousands, two hundreds and thirty four

(4) Read the following number then write it as the example:

Example: 50347 Fifty thousands, three hundreds and forty seven.

26296
84573
96684
31065
(5) Complete as the example:

Example: 23547 = 547 + 23000
 = 7 + 40 + 500 + 3000 + 20000

64365 = 395 + ______
 = 5 + ______ + ______ + ______ + ______

50218 = ______ + ______
 = ______ + ______ + ______ + ______ + 50000

98760 = ______ + ______
 = ______ + ______ + ______ + ______ + ______

(6) Complete according to the place value:

<table>
<thead>
<tr>
<th>Number</th>
<th>Units</th>
<th>Tens</th>
<th>Hundreds</th>
<th>Thousand</th>
<th>Ten thousand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6278</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40951</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12430</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(7) Write the place value of the circled digit:

Example: 6 2 4 3 5 hundreds

1 7 9 8 2
9 4 3 0 1
3 4 6 9 7
8 6 9 4 3
9 8 7 6 2
(8) Complete the following tables:

<table>
<thead>
<tr>
<th></th>
<th>16300</th>
<th>16400</th>
<th>16500</th>
<th>16600</th>
<th>16700</th>
<th>16800</th>
</tr>
</thead>
<tbody>
<tr>
<td>16900</td>
<td>17000</td>
<td>17100</td>
<td></td>
<td></td>
<td>17900</td>
<td></td>
</tr>
<tr>
<td>99941</td>
<td>99841</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99341</td>
<td></td>
<td></td>
<td>99041</td>
<td></td>
<td></td>
<td>98441</td>
</tr>
</tbody>
</table>

(9) Complete

<table>
<thead>
<tr>
<th>Number</th>
<th>add 10</th>
<th>add 100</th>
<th>add 1000</th>
<th>add 10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>86249</td>
<td>86259</td>
<td>86349</td>
<td>87249</td>
<td></td>
</tr>
<tr>
<td>57683</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24378</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>- 10</th>
<th>- 100</th>
<th>- 1000</th>
<th>- 10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>64328</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12905</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90457</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(10) Complete in the same pattern:

51243	51253	51263		
27811	27711	27611		
38967	38975	38983		
77777	77666	77555		
90102	89102	88102		
(11) Compare (<, = or >)

<table>
<thead>
<tr>
<th></th>
<th>34265</th>
<th>44189</th>
<th>48206</th>
<th>48106</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>69284</td>
<td>69282</td>
<td>94321</td>
<td>94321</td>
</tr>
<tr>
<td></td>
<td>85643</td>
<td>85593</td>
<td>10025</td>
<td>10000</td>
</tr>
</tbody>
</table>

(12) Arrange the following sets of numbers ascendingly and descendingly:

Ascending Order:
- 52943, 27657, 28654, 32981, 47564
- 87942, 87941, 86847, 12243, 15621
- 63456, 62457, 71493, 59538, 46321

Descending Order:
- 52943, 27657, 28654, 32981, 47564
- 87942, 87941, 86847, 12243, 15621
- 63456, 62457, 71493, 59538, 46321

(13) Form the greatest and smallest numbers using all the digits in each case:

Case 1:
- Greatest number: 82179
- Smallest number: 1247

Case 2:
- Greatest number: 47412
- Smallest number: 1247
(14) Join the cards that have same number:

- 35035
- 35 + 3500
- 35 + 35000
- 3535
- 35 + 500 + 3000
- 535 + 3000
- 35 + 5000 + 30000
- 5035 + 30000

(15) By using arrows join in an ascending order:

- 63528
- 63852
- 65832
- 63258
- 65382
- 65823

(16)

Form a number of 5 digits and its hundreds is 9

Form a number of 5 digits its tens digit is twice its units

Form a greatest 5 digits its number and their sum is 3

Form a greatest 5 different digits number and their sum is 12
(17) Under line the nearest number to 40000:

\[
[3999, 41111, 39900]
\]

Under line the nearest number to 9999:

\[
[9090, 10000, 9900]
\]

Under line the nearest number to 10000:

\[
[9900, 9990, 10099]
\]

(18) Complete as the example:

Example

\[
\begin{align*}
24532 &= 532 + 24000 \\
&= 2 + 30 + 500 + 4000 + 20000
\end{align*}
\]

\[
\begin{align*}
37649 &= 649 + \underline{} \\
&= 9 + \underline{} + \underline{} + \underline{} + \underline{} + \underline{}
\end{align*}
\]

\[
\begin{align*}
&\text{---}
\end{align*}
\]
(19) Write the following numbers inside the rectangles such that the arrow goes from smaller to greater:

46875, 48675, 46785, 47685

(20) Put suitable numbers inside the rectangles on the number line:

35000 36000
Exercises on Unit Two

(1) Complete:

<table>
<thead>
<tr>
<th>Number</th>
<th>Units</th>
<th>Tens</th>
<th>Hundreds</th>
<th>Thousand</th>
<th>Ten thousand</th>
</tr>
</thead>
<tbody>
<tr>
<td>82943</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7532</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2) Write the place value for the circled digit:

- 2 5 4 3 6
- 8 9 7 2 1
- 7 4 9 2 3

(3) Complete in the same pattern:

- 28530, 28630, 28730
- 64578, 64568, 64558
- 59678, 58678, 57678

(4) Complete using (<, =, or >):

(a) 12678 _ _ _ 44189
(b) 35894 _ _ 35904
(c) 93257 _ _ 69282
(d) 65289 _ _ 65279
(5) Arrange the following numbers in ascending and descending order:

17849, 48928, 32567, 94328, 56394

ascending order: ________________________
descending order: ________________________

(6) Form the greatest and smallest number from the following digits in digits and in words:

5, 3, 2, 1, 8

Smallest number in digits: ________________________
by words: ________________________

Greatest number in digits: ________________________
by words: ________________________

(7) Complete:
the number represented by the opposite abacus is: ____________

(8) 85124 = 124 + ____________

(9) The sum which represented by the opposite figure = LE ____________
Cross number puzzle:
Write one number in each square so that it satisfies the following:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>0</td>
<td>9</td>
</tr>
</tbody>
</table>

Horizontal numbers

1. The greatest number of 5 different digits.
2. The smallest number of 5 different digits.
3. The greatest number lying between 40000 and 50000 and its unit digit is 8.
4. The smallest 5 digit number. 5. A 5-digit number whose sum is 27.

Vertical numbers

(a) A 5-digit number whose sum is 20
(b) A 5-digit number whose sum is 22
(c) A 5-digit number whose sum is 24
(d) A 5-digit number whose sum is 24
(e) A 5-digit number whose sum is 20

Numbers and digits

(1) Put the two digits 2 and 7 in the empty spaces in the number 4 _ _ 9 _ _ 3 so that the resulting number is:

(a) as great as possible: ___________
(b) as small as possible: ___________
Unit Two

(2) Rearrange the digits of the number 23157 so that the resulting number is:

(a) as great as possible: ____________________
(b) as small as possible: ____________________

(3) Rearrange the digits of the number 4019 so that the resulting number is:

(a) as close as possible to 1000: ______________
(b) as close as possible to 10000: ______________

(4) L.E 1000 (One thousand pound)

(a) Equals ________ 100 - bank note
(b) Equals ________ 200 - bank note
(c) Equals ________ 50 - bank note
(d) Equals ________ 10 - bank note
(e) Equals ________ 20 - bank note
(f) Equals ________ 5 - bank note

(5) L.E 10000:

(a) Equals ________ 100 - bank note
(b) Equals ________ 200 - bank note
(c) Equals ________ 50 - bank note
(d) Equals ________ 10 - bank note
(e) Equals ________ 20 - bank note
Unit (3)

Adding and subtracting up to no more than 999999
Finding the sum of two numbers

We need to carry addition operations in many different situations as:

- A factory produced 745 and 983 units of a certain product in two consecutive months. What is the number of units produced by this factory in the two months together?

- Mohamed and Markos donate to one of the charities. Mohamed paid 750 pounds and Makros paid 420 pounds. The total that was requested which that charity received from the two persons together. And the following examples show the sum of two numbers.

Example 1:

3264
+ 4725

7989

3 + 4 = 7 thousands
2 + 7 = 9 hundreds
4 + 5 = 9 units
Finding the sum of two numbers

This can also be expressed as:

<table>
<thead>
<tr>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

The result is read: seven thousands nine hundred and eighty nine.

Example 2: Add:

\[
\begin{array}{c}
2148 \\
+ 1435 \\
\hline
3583
\end{array}
\]

\[
\begin{array}{c}
2 + 1 = 3 \text{ thousands} \\
1 + 4 = 5 \text{ hundreds} \\
1 + 4 + 3 = 8 \text{ tens} \\
8 + 5 = 3 + 10
\end{array}
\]

This can also be expressed as:

<table>
<thead>
<tr>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>8</td>
<td>3</td>
</tr>
</tbody>
</table>

The result is read: three thousand five hundred and eighty three.
Example 3: Add

\[
\begin{array}{c}
55296 \\
+ 24637 \\
\hline
79933
\end{array}
\]

Look at the following figures and find out the steps used to obtain the result:

This can also be expressed as:

<table>
<thead>
<tr>
<th>Ten thousands</th>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>2\text{(\uparrow)}</td>
<td>9\text{(\uparrow)}</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>9</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

The result is read: Seventy nine thousands, nine hundred and thirty three.
Exercises

(1) Add:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6345</td>
<td>2083</td>
<td>6946</td>
<td>2341 + 7 =</td>
</tr>
<tr>
<td>+ 3</td>
<td>+ 7</td>
<td>+ 9</td>
<td>3856 + 4 =</td>
</tr>
<tr>
<td>2842</td>
<td>3092</td>
<td>4376</td>
<td>2146 + 31 =</td>
</tr>
<tr>
<td>+ 16</td>
<td>+ 44</td>
<td>+ 65</td>
<td>1492 + 48 =</td>
</tr>
<tr>
<td>4370</td>
<td>2227</td>
<td>2619</td>
<td>3041 + 628 =</td>
</tr>
<tr>
<td>+ 123</td>
<td>+ 181</td>
<td>+ 398</td>
<td>1546 + 616 =</td>
</tr>
<tr>
<td>6284</td>
<td>5627</td>
<td>4391</td>
<td>7154 + 1845 =</td>
</tr>
<tr>
<td>+ 2513</td>
<td>+ 2546</td>
<td>+ 3583</td>
<td>4584 + 2428 =</td>
</tr>
</tbody>
</table>

(2) Add as in the example:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2468</td>
<td>3604</td>
<td>1786</td>
</tr>
<tr>
<td>+ 4372</td>
<td>+ 2125</td>
<td>+ 3127</td>
</tr>
<tr>
<td>+ 1543</td>
<td>+ 2461</td>
<td>+ 2542</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8383</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1257 + 493 + 3600 = 3908 + 2743 + 2829 =
(3) Add:

\[
\begin{array}{c}
36854 + 49142 \\
+28957 + 24892 \\
+29876 + 34659 \\
+38276 + 41724 \\
\end{array}
\]

\[
\begin{array}{c}
27665 + 38967 = ______
\\
69210 + 26428 = ______
\end{array}
\]

(4) Complete as in the example:

\[
\begin{array}{c}
53116 + 24432 + 12234 = 89782 \\
+23792 + 26341 + 35629 = ______ \\
+36798 + 15347 + 29843 = ______ \\
+9735 + 30102 + 777 = ______ \\
\end{array}
\]

\[
\begin{array}{c}
44536 + 17312 + 22305 = ______ \\
25441 + 36822 + 29789 = ______ \\
\end{array}
\]

(5) Find the result (mentally) for each of the following:

(a) \(4375 + 1000 = ______\)
(b) \(79245 + 30 = ______\)
(c) \(394 + 58000 = ______\)
(d) \(7 + 600 + 12000 = ______\)
(e) \(497 + 99 = ______\)
(f) \(71564 + 1001 = ______\)
2345 primary school children were vaccinated against polio in one department, and 1664 in another department. What is the total number of vaccinated children in the two departments on that day?

The total of vaccinated children = ________ + ________ = ____ children

26453 and 32349 economic flats were built in two governorates in one year. What is the total number of economic flats built by the two governorates?

Total number of flats built by the two governorates = ________ + ________ = ____ flats

Samir saved 875 piastres in one month, 225 piastres in the next month and 950 piastres in the third month. What is the total amount Samir saved?

Total amount Samir saved = ________ + ________ + ________ = ____ piastres

Ahmed, Nagy and Said decided to be partners in a small business. They paid respectively 25000, 15000, 30000 pounds. What is the total sum they paid?

Total sum paid = ________ + ________ + ________ = ____ pounds
Lesson 2

The properties of the addition operation

First: Omar lives in one of Sohag’s villages. He is used to going to school by bike. The distance between his house to the hostel “on road” is 500m. Then, from the hostel to the school is 400m. So the distance which Omar takes is:

= The distance from house to the hostel + the distance from the hostel to the school
= 500 + 400 = 900 m

The distance which Omar takes in return =

= the distance from school to the hostel + the distance from the hostel to the house
= 400 + 500 = 900 mètres

What do you notice?

500 + _____ = 400 + _____

So we can exchange the numbers in adding and get the same result.

Complete as in the example:

Example: 3652 + 127 = 127 + 3652

(a) 2700 + 358 = _____ + 2700
(b) 6315 + _____ = 1230 + 6315
(c) _____ + 6210 = 6210 + 741
(1) Complete as in the example:

\[(1000 + 2000) + 700 = 1000 + (2000 + 700)\]

(a) \[(6350 + 650) + 3000 = 6350 + (650 + ____)\]

(b) \[(4320 + ___) + 180 = 4320 + (1250 + 180)\]

Second:

(2) Notice and complete:

\[
\begin{align*}
2194 + 1209 + 4354 &= (2194 + 1209) + 4354 \\
&= 3403 + ____ \\
&= ____ \\
2194 + 1209 + 4354 &= 2194 + (1209 + 4354) \\
&= 2194 + ____ \\
&= ____ \\
\end{align*}
\]

(a) \[(2194 + 1209) + 4304 = 2194 + (1209 + ______)\]

(b) \[(1789 + 24559 + _____) = 1789 + (______ + 5016)\]

(c) \[(_____ + 3282) + 2943 = 3174 + (3282 + ______)\]

(d) \[(5210 + 1251) + ______ = 5210 + (______ + 3539)\]

(3) Mohamed found out that 6275 + 65483 = 71758 and that 346 + 654 = 1000. He immediately concluded that the results of the following addition operations are:

(a) \[65483 + 6275 = _______________\]

(b) \[654 + 346 = _______________\]

(c) \[6275 + 346 + 654 = _______________\]

(d) \[65483 + 346 + 654 = _______________\]

(e) \[6275 + 65483 + 346 + 654 = _______________\]
Unit (3)

Lesson 3

Subtracting two numbers

We need to carry subtracting operations in many different situations as:

- In a school of 793 pupils, 348 pupils participate in the scouting activity, how many pupils do not participate in this activity?

The number of pupils whom do not participate in this activity = 793 - 348 = 445

And the following examples show the subtraction operation:

Example 1:

\[
\begin{array}{c}
6452 \\
- 2241 \\
\hline
4211
\end{array}
\]

Notice that this result (4211) can be expressed in any of the following ways:

- 6452 - 2241
- the decreased of 2241 than 6452
- the increased of 6452 than 2241
- the remainder of subtracting 2241 from 6452
- the difference between 6452 and 2241
- the difference between 2241 and 6452

In this case we subtract from the greater and the answer can be written as:

<table>
<thead>
<tr>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The result is read: four thousand two hundred and eleven.
Example 2: Subtract \(473 - 125\)

```
\[
\begin{array}{c}
4 & 7 & 3 \\
- & 1 & 2 & 5 \\
\hline
3 & 4 & 8 \\
\end{array}
\]
```

\(4 - 1\) \(6 - 2\) \(13 - 5\)

\(473 - 125 = 348\)

Complete as the example (2):

```
\[
\begin{array}{c}
5 & 2 & 9 & 4 \\
- & 2 & 7 & 4 & 9 \\
\hline
\end{array}
\]
```

The answer may also be written as:

```
\[
\begin{array}{c|c|c|c}
\text{thousands} & \text{hundreds} & \text{tens} & \text{units} \\
5 & 2 & 9 & 4 \\
- & 2 & 7 & 4 & 9 \\
\hline
2 & 5 & 4 & 5 \\
\end{array}
\]
```

\(5294 - 2749 = \underline{2545}\)
(1) Subtract

\[
\begin{array}{cccc}
3987 & 5734 & 76053 & 24305 \\
-1652 & -2568 & -5296 & -3071 \\
\hline
2654 & 5166 & 6997 & 2258
\end{array}
\]

\[
\begin{array}{ccc}
2654 - 1431 &=& \\
7326 - 5296 &=& \\
49438 - 36776 &=& \\
35670 - 2558 &=& \\
\end{array}
\]

(2) Ali has 1525 piastres. If he buys a box of cheese for 750 piastres, how many are left with him?

The left money with Ali = _____ - _____ = _____ piastres.

(3) Hanan had 3647 pounds in her saving account now? She takes away 1258 pounds. How much money is in her account after the withdrawal?

The remaining amount of money in Hanan's savings account after the withdrawal = _____ - _____ = _____ pounds.

(4) Complete according to the same sequence:

(a) 2675, 2668, 2661, _____, _____, _____
(b) 9146, _____, 8946, 8846, _____
(c) 63669, 63659, 63649, _____, _____
(d) 6954, 6974, 6994, _____, _____
(e) 75072, 74972, 74872, _____, _____
(5) Circle the closest number to the correct answer (without performing the subtraction operation):

(a) $6134 - 2965$
 1000 ; 2000 ; 3000 ; 4000

(b) $4372 - 1278$
 1000 ; 2000 ; 3000 ; 4000

(c) $9586 - 5542$
 1000 ; 2000 ; 3000 ; 4000

(6) Find the result (mentally) for each of the following:

(a) $4976 - 500 = ________$

(b) $4976 - 30 = ________$

(c) $6258 - 258 = ________$

(d) $6258 - 6250 = ________$

(e) $7583 - 99 = ________$

(f) $7583 - 1001 = ________$
the relation between addition and subtraction

(1) Eman saved 130 pounds and her father gave her 20 pounds on her birthday. How much money does she have now?

Complete: \[130 + \underline{\hspace{2cm}} = \underline{\hspace{2cm}} \text{ pounds} \]

Eman took 20 pounds out of her savings to buy some stories. How much money does she have now?

Complete: \[\underline{\hspace{2cm}} - 20 = \underline{\hspace{2cm}} \]

Complete: \[+ 20 \]

\[130 \]

\[20 \]

\[= \]

\[= \]
(2) The opposite figure shows 350 pounds. How much money we need unit the amount becomes 450 pounds.

Complete the following:
The total = __________ + __________
The complemented amount = _______ - _________

Complete:

(3) Use the following figure to complete:

4735
6908

6908 + 4735 = __________
4735 + 6908 = __________
11643 - 6908 = __________
11643 - 4735 = __________
(4) Complete:

```
+ 100
8374  
14072  
58000
```

```
+ 10
8374  
14072  
58000
```

(5) Complete:

```
874 + 35 = 909
909 - 874 = 
73 + 928 = 
1001 - 73 = 928
```

```
35 + 874 = 
909 - 35 = 
928 + = 
1001 - =
```

(6)

(a) What is the number which if subtracted from 500, the result is 99?

(b) What is the number added to 734 to make 1000?

(c) If we subtracted 400 from a number the result is 400. Find the number?
Exercises on unit (3)

1. Complete using one of the signs \((\ < \ , \ = \ , \ >) \): without doing addition or subtraction:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>5487</td>
<td>+</td>
</tr>
<tr>
<td>b)</td>
<td>85732</td>
<td>+</td>
</tr>
<tr>
<td>c)</td>
<td>71206</td>
<td>+</td>
</tr>
<tr>
<td>d)</td>
<td>3294</td>
<td>-</td>
</tr>
<tr>
<td>e)</td>
<td>1987</td>
<td>-</td>
</tr>
<tr>
<td>f)</td>
<td>7400</td>
<td>-</td>
</tr>
</tbody>
</table>

2. Complete using the suitable numbers:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>1654</td>
<td>+</td>
</tr>
<tr>
<td>b)</td>
<td>80235</td>
<td>+</td>
</tr>
<tr>
<td>c)</td>
<td>7864</td>
<td>-</td>
</tr>
<tr>
<td>d)</td>
<td>______</td>
<td>+</td>
</tr>
<tr>
<td>e)</td>
<td>9999</td>
<td>=</td>
</tr>
</tbody>
</table>

3. Circle the closest number to the result (without doing the addition or subtraction):

<table>
<thead>
<tr>
<th></th>
<th>1000</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
<th>6000</th>
<th>7000</th>
<th>8000</th>
<th>9000</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>5940</td>
<td>+</td>
<td>3170</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td>1213</td>
<td>+</td>
<td>2394</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td>7235</td>
<td>-</td>
<td>1143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d)</td>
<td>4670</td>
<td>-</td>
<td>3569</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(4) Subtract 2357 from 23194 and add 4209 to the result:

Subtraction operation:

\[
\begin{array}{c}
- \\
\end{array}
\]

Addition operation:

\[
\begin{array}{c}
+ \\
\end{array}
\]

(5) Find the result of each of the following:

(a) \[8175 + 6243 - 9751 = \]
(b) \[73208 + 1045 - 2045 = \]
(c) \[14293 - 8093 - 250 = \]
(d) \[64587 - 1487 + 8253 = \]

(6) Complete:

\[
\begin{array}{c|c}
+ 100 & 7451 & 13729 \\
7551 & & \\
+ 1000 & & \\
& 5749 & 12398 \\
\end{array}
\]

(7) Choose the correct answer:

(a) Hossam has LE 4236, his sister has LE 8135, they have altogether:

(i) \[8135 - 4236 \]
(ii) \[8135 + 4236 \]
(iii) \[4236 - 8135 \]

(b) Adel has LE 3540 in his saving account, then he take a way LE 1310 from it:

(i) Subtraction
(ii) Multiplication
(iii) Addition
(8) Complete:
(a) The number must be added to 4235 so the result will be 7235 is _____
(b) 1000 + _____ > 999 + 137
(c) If 153 + 547 = 700, 259 + 741 = 1000, then 153 + 259 + 547 + 741 = ________

(9) Arrange the following sets of numbers ascendingly and descendingly and find the sum of the smallest and the greatest numbers:

(a) 12647, 30625, 9487, 91278, 62368
 Ascendingly: __________
 Descendingly: __________
 The greatest number is: __________ The smallest number is: __________
 The sum of the greatest and the smallest numbers = ____ + ____ = _____

(b) 51634, 34527, 12389, 8024, 95632
 Ascendingly: __________
 Descendingly: __________
 The greatest number is: __________ The smallest number is: __________
 The sum of the greatest and the smallest numbers = ____ + ____ = _____

(c) 49953, 10728, 27835, 86264, 35867
 Ascendingly: __________
 Descendingly: __________
 The greatest number is: __________ The smallest number is: __________
 The sum of the greatest and the smallest numbers = ____ + ____ = _____

(10) Complete in the same sequence:
 5234, 5334, 5434, __________
 8778, 8678, 8578, __________
 58442, 58542, 58642, __________
(11) Write each of the following numbers in the form of the sum of its components as in the Example:

Example:

<table>
<thead>
<tr>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>7</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

\[4736 = 4000 + 700 + 30 + 6 \]

(a) \[9518 = _ + _ + _ + _ \]

(b) \[4637 = _ + _ + _ + _ \]

(c) \[2907 = _ + _ + _ + _ \]

(12) The total amount of deposits in the savings account at a post office in a moth was 54786 pounds and in the next month it was 44234 pounds, what is the total amount of deposits in the two months?

The total amount of deposits in two months = _ = ___ pound

(13) A hospital received 39825 pounds of donations in one week and 46774 in the next week. what is the total amount of donations in the two weeks?

The total amount of donations in the two weeks =
_ = ___ pound
(14) 1053 cars were parked in a parking lot. Another 408 cars were parked there. The remaining places can take another 37 cars. Find the number of cars this parking lot can accommodate?

The numbers of cars this parking can accommodate

(15) 76123 tourists visited Egypt in one month and next month 87679 tourists visited it. What is the difference between the numbers of tourists in the two months?

The difference between the numbers of tourists in the two months = ________

= ________ tourists

(16) The number of economical flats built in a year in one of the governorates was 36024 flats and 31192 flats were built in another governorates in the same year. What is the difference between the number of economical flats built that year in the two governorates?

The difference between the number of flats = ____________

= ____________
(17) The following are the years in which some important historical events took place in Egypt:

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1869</td>
<td>The inauguration of the Suez canal</td>
</tr>
<tr>
<td>1952</td>
<td>The Glorious July revolution</td>
</tr>
<tr>
<td>1973</td>
<td>The great October victory</td>
</tr>
<tr>
<td>2011</td>
<td>25 January Revolution</td>
</tr>
</tbody>
</table>

With the help of the previous data, answer the following questions:

(a) How many years passed between the July Revolution and the October victory?

(b) Calculate the time that passed between the inauguration of the Suez canal and the October victory.

(c) How many years passed since the July Revolution up till now?

(d) How many years have passed since the 23 July 1952 until 25 January 2011?

(18) Using the properties of addition to find:

\[4372 + 614 + 3648 + 386 \]

\[= \underline{4372} + \underline{3648} + \underline{614} + \underline{386} \]

\[= \underline{4000} + \underline{4000} + \underline{1000} + \underline{1000} \]

\[= \underline{9000} \]
(1) Replace each shape with a digit to obtain a correct addition operation:

```
+  
9  
3  
```

- Shape = ____, = ____, = ______

(2) Find two consecutive numbers whose sum is 10001.

_________________________ _______________________

(3) Think, then find the result.

<table>
<thead>
<tr>
<th>Find 36 - 9</th>
<th>Find 423 - 99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Think: 9 is less than 10 by 1</td>
<td>Think: 99 is less than 100 by 1</td>
</tr>
<tr>
<td>Subtract 10: 36 - 10 = ___</td>
<td>Subtract 100: 423 - 100 = ___</td>
</tr>
<tr>
<td>Then add 1: ___ + 1 = ___</td>
<td>Then add 1: ___ + 1 = ___</td>
</tr>
<tr>
<td>Then 36 - 9 = ___</td>
<td>Then 423 - 99 = ___</td>
</tr>
</tbody>
</table>
(4) Find out the pattern and complete:

(a) 20000, 19000, 17000, ________, 10000, ________

(b) 20000, 15000, 11000, ________, ________, 5000
Unit (4)
Geometry
Solids

Practical Exercises: How can we make a box out of cardboard?

Fold the cardboard and glue it to make a box without a lid.

Fold the cardboard and glue it to make closed box.

Match each of the following figures to the solid we can make out of it:
Making a pyramid out of cardboard

Fold the cardboard and glue it to make a pyramid as in the following figure.

Making a prism out of cardboard.

Fold the cardboard and glue it to make a prism as shown in the opposite figure.

Match each of the following figures to the solid we can make out of it:
Lesson 2

Using a ruler to measure the length of a line segment

In the opposite figure you will find that the length of this line segment = 5 centimeters.

Therefore \(AB = 5 \text{ cm} \).

(1) In each of the following figures, read the measure on the ruler and complete:

\[
\begin{align*}
CA &= \ldots \ldots \text{ cm} \\
XY &= \ldots \ldots \text{ cm}
\end{align*}
\]

\[
\begin{align*}
LM &= \ldots \ldots \text{ cm} \\
EF &= \ldots \ldots \text{ cm} \\
KN &= \ldots \ldots \text{ cm}
\end{align*}
\]
Using a ruler to measure the length of a line segment

(2) Use a graded ruler to measure the length of each of the drawn line segments in the following figures:

\[\begin{align*}
AB &= \ldots \text{cm} \\
CD &= \ldots \text{cm} \\
EF &= \ldots \text{cm} \\
\end{align*}\]

\[\begin{align*}
ZL &= \ldots \text{cm} \\
MN &= \ldots \text{cm} \\
XY &= \ldots \text{cm} \\
\end{align*}\]
(3) Use a graded ruler to measure the length of each of the following:

For the triangle:
- $XY =$ cm
- $YZ =$ cm
- $ZX =$ cm

For the rectangle:
- $AB =$ cm, $BC =$ cm
- $CD =$ cm, $DA =$ cm

What do you notice?
The figure $ABCD$ is a

For the square:
- $XY =$ cm, $YZ =$ cm
- $XZ =$ cm

What do you notice?
The figure XYZ is a
Unit (4) Lesson 3

Geometric constructions

First: Drawing a line segment of a known length

Draw the line segment AB of length 5 cm use the graded ruler and a pencil

First step: Mark a point (A) on the ruler edge at the beginning of the graduation (0), then count gradually up to 5, then mark the second point (B).

Second step: Join the two points A, B, to get the line segment AB, of length 5 cm.

Remark: it is denoted for the line segment AB by the symbol \(\overline{AB} \), also the length of \(\overline{AB} \) by \(AB \).

It means that: \(AB = BA = 5 \) cm

In the previous example (\(\overline{AB} = 5 \) cm is not true)

(1) Draw a line segment AB with length 4 cm long inside the following rectangle.
(2) Inside the following rectangle draw a line segment, with length 4 cm long which the point \(X \) is one of its ends and the other end is \(Y \).

\[X \cdot \]

(3) Inside the following rectangle draw two line segments (\(\overline{AB}, \overline{CD} \)), each with length 5 cm long and intersecting at the point \(Y \).

\[\cdot Y \]

(4) Inside the following rectangle draw a line segment \(\overline{AB} \) with 4 cm long with the point \(N \) at its midpoint.

\[\cdot N \]
Second: drawing squares and rectangles on a lattice:

The two figures drawn on this lattice are the square ABCD and the rectangle XYZM. If we take the length of the side of the small square of the lattice as one unit of the length, then the length of the side of ABCD is 4 units. The lengths of the two dimensions of the rectangle XYZM are 5 and 3 of these units (i.e. the length is 5 units and the width is 3 units).

Drill

In the opposite lattice, if we take the length of the small square as a length unit, draw the following shapes:

1. Draw the square XYZL of side length 5 units long.
2. Draw the square ABCD of side length 6 units long.

3. Draw the rectangle ABCD whose dimensions are 5,3 units long.

4. Draw the rectangle XYZL whose dimensions are 7,4 units long.
Lesson 4

Congruency of Two Geometric Figures

Practical Exercise (1)

1. Bring a square piece of paper.
2. Use scissors to cut this paper into two triangle-shaped pieces of paper.
3. Put one of the pieces on top of the other. Make sure that these two triangles are exactly the same.

Therefore, these 2 triangles are congruent.

Practical Exercise (2)

1. Bring two pieces of paper. put one of them on the other.
2. Use scissors to cut out any figure you like (out of the two papers at the same time)
3. Remove the two figures from the two papers to get two congruent figures.
4. Check out that these two figures are exactly the same practically.
Practical Exercise (3)

1. Bring tracing paper and copy the figure A B C D.

2. Put it on top of the figure XYZM. Move it until vertex A is on top of vertex X, B on Y, C on Z, and D on M.

You are now sure that the two figures are congruent.

Exercises

(1) Identify the two congruent figures and colour them using the same colour:
(2) Complete drawing the right figure to make it congruent with the left figure. (use tracing paper to check that they are congruent).

(3) Draw a figure congruent with the drawn figure in the opposite lattice.

(4) There are two congruent figures among the following figures. Find them and put (✓) in side each one:
(5) Colour each two congruent figures in the same colour:

(6) Two of these three polygons are congruent. Put (✓) in side the congruent polygons:
(7) On the right side draw a figure congruent with the polygon on the left side:

(8) A rectangle piece of paper is cut into 4 triangles and colour them with the same colours as the original figure.
Visual patterns
(recognizing and building them)

(1) Notice that the groups of figures follow each other according to a certain pattern.

Describe the pattern and complete by drawing the three following figures in each case:

Group One:

The pattern is

Group Two:

The pattern is

Group Three:

The pattern is

Group Four:

The pattern is

Group Five:

The pattern is
Group Six:

The pattern is: __________________________

Group Seven: A B A B B A B B B B A

The pattern is: __________________________

(2) Form patterns of your own and draw 8 elements for each.
Unit Four
Lesson 6

The angle

The pervious figure is an angle whose vertex is the point A and its sides are \overrightarrow{AB}, \overrightarrow{AC}.

Notice that:
- The ray \overrightarrow{AB} denoted by $\overrightarrow{A B}$ starting from A, extended from B.
- The ray \overrightarrow{BA} denoted by $\overrightarrow{B A}$ starting from B, extended from A.

Complete the table:

<table>
<thead>
<tr>
<th>The figure</th>
<th>Name of the angle</th>
<th>The vertex</th>
<th>The sides of the angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\angle ABC$ or $\angle CBA$ or $\angle B$</td>
<td>B</td>
<td>\overrightarrow{BA}, \overrightarrow{BC}</td>
</tr>
<tr>
<td></td>
<td>or or or</td>
<td>Y</td>
<td>and</td>
</tr>
<tr>
<td></td>
<td>or or or</td>
<td>or or</td>
<td>or and</td>
</tr>
<tr>
<td></td>
<td>or or or</td>
<td>or or</td>
<td>or and</td>
</tr>
<tr>
<td></td>
<td>or or or</td>
<td>or or</td>
<td>or and</td>
</tr>
</tbody>
</table>
Measuring angles:

First: Using $\angle L$ as a measuring unit:

Compare between $\angle A B C$ and $\angle X Y Z$

For comparing: notice the number of times of $\angle L$ for each of the two angles containment.

Notice and complete:

$\angle A B C$ has $\ldots \ldots \ldots \ldots \ldots$ of the measuring ($\angle L$)

$\angle X Y Z$ has $\ldots \ldots \ldots \ldots$ of the measuring.

and therefore the measure of $\angle A B C$ $\ldots \ldots \ldots \ldots \ldots$ the measure of $\angle X Y Z$.

($<$ or $>$ or $=$)
Second: The protractor:

The protractor is a geometric tool used for measuring angles. The straight angle is divided into 180 equal parts each part is 1 degree. Therefore the measuring unit of angles is the degree and is written as 1°.

The opposite figure shows how a protractor is used for measuring an angle.

The measure of $\angle A M B = 50^\circ$.

(1) Use the protractor to measure the shown angles and complete the table:

<table>
<thead>
<tr>
<th>Angle</th>
<th>The measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\angle A$</td>
<td></td>
</tr>
<tr>
<td>$\angle B$</td>
<td></td>
</tr>
<tr>
<td>$\angle C$</td>
<td></td>
</tr>
<tr>
<td>$\angle D$</td>
<td></td>
</tr>
</tbody>
</table>
Types of the angles:

Practical exercise:

Move the cardboard bars as shown in the opposite figure:

1. expresses the angle 0°.

2. expresses the acute angle.
 examples: 20°, 30°, 60°, 79°

3. expresses the right angle, its measure 90°

4. expresses the obtuse angle, its measure is greater than 90° and less than 180°
 examples: 95°, 100°, 150°, 179°

5. expresses the straight angle, its measure is 180°
 (2 right angles)

We will study later more angles getting from moving the bars.
The following figure shows the types of the angles:

![Diagram showing angles: acute, right, obtuse, and straight]

(2) Complete the following table as in the example:

<table>
<thead>
<tr>
<th>The measure of the angle</th>
<th>Its type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td></td>
</tr>
<tr>
<td>50°</td>
<td>acute</td>
</tr>
<tr>
<td>120°</td>
<td></td>
</tr>
<tr>
<td>90°</td>
<td></td>
</tr>
<tr>
<td>45°</td>
<td></td>
</tr>
<tr>
<td>135°</td>
<td></td>
</tr>
<tr>
<td>100°</td>
<td></td>
</tr>
<tr>
<td>7°</td>
<td></td>
</tr>
<tr>
<td>91°</td>
<td></td>
</tr>
<tr>
<td>180°</td>
<td></td>
</tr>
<tr>
<td>108°</td>
<td></td>
</tr>
</tbody>
</table>
(3) Use the protractor to find the measure of each of the following angles, then complete:

Measure of \(\angle A\) = \(\underline{\hspace{2cm}}\)°, and its type is \(\underline{\hspace{2cm}}\).

Measure of \(\angle D\) = \(\underline{\hspace{2cm}}\)°, and its type is \(\underline{\hspace{2cm}}\).

Measure of \(\angle X\) = \(\underline{\hspace{2cm}}\)°, and its type is \(\underline{\hspace{2cm}}\).

Measure of \(\angle C\) = \(\underline{\hspace{2cm}}\)°, and its type is \(\underline{\hspace{2cm}}\).

Measure of \(\angle F\) = \(\underline{\hspace{2cm}}\)°, and its type is \(\underline{\hspace{2cm}}\).

Measure of \(\angle Z\) = \(\underline{\hspace{2cm}}\)°, and its type is \(\underline{\hspace{2cm}}\).
Drawing an angle of known measure:

Example: Draw \(\overrightarrow{ABC} \) of measure 60°

1. Draw the ray \(\overrightarrow{BA} \)

2. Put the centre of the protractor on point B and its base on \(\overrightarrow{BA} \), then put a mark at point C at 60°

3. Draw the ray \(\overrightarrow{BC} \) you will get \(\angle ABC \) with measure 60°

Draw angles with the following measures:

\(50°, 90°, 95°, 47°, 86°, 150° \)
(1) On the opposite lattice draw:

(a) A line segment 7 units long.
(b) Square whose side length is 4 units long.
(c) A rectangle whose dimensions are 2 and 7 units long.
 (Consider the length of the small square as a unit length).

(2) Underline the correct answer

(a) The Measure of an acute angle.
 (90°, less than 90°, more than 90°)
(b) The Measure of a right angle is.
 (90°, less than 90°, more than 90°)
(c) When it is seven o'clock, the angle between the hands of the clock is

 (acute, right, obtuse)
(d) The angle between the hands of the clock is a right angle when it is
 O’clock.
 (2, 3, 6).

(3) On the following lattice, draw a congruent shape to the drawn shape.
(4) Use the protractor, measure each of the following, then complete:

(a) \[\angle A B C = \underline{} ^\circ \]
(b) \[\angle D E F = \underline{} ^\circ \]
(c) \[\angle X Y Z = \underline{} ^\circ \]
(d) \[\angle L M N = \underline{} ^\circ \]

(5) Use the ruler, pencil and the protractor. Draw

(a) \[\angle A B C \text{ where } m(\angle A B C) = 70^\circ \]
(b) \[\angle X Y Z \text{ where } X(\angle X Y Z) = 130^\circ \]

(6) Complete:

(a) The base of the cylinder is in the form \underline{}
(b) The number of the edges of a cuboid = the number of the edges of a \underline{}
(c) The angle between the hands of the clock is a straight when it is \underline{} O’clock
The following are three congruent triangles:

1. Each of the following figures is made up of these three triangles by assembling them in different positions. Draw 2 line segments inside each figure to divide it into the three triangles:

(2) Visual patterns using matchstick:

Matchsticks can be used to form different geometric figures. Look at the following table. Find out the pattern, then complete and answer the questions:

<table>
<thead>
<tr>
<th>Order</th>
<th>Shape</th>
<th>Number of matchsticks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) How many matchsticks are needed to form the 6th, 7th and 8th from figures of the same pattern?
 The Sixth: __________. The seventh __________. The eighth: __________.

(b) According to this pattern, what is the order of the shape formed from 34 matchsticks? __________

(c) Form a similar pattern using triangles instead of squares. Write the number of matchsticks needed to form the first five shapes.

<table>
<thead>
<tr>
<th>Shape</th>
<th>First</th>
<th>Second</th>
<th>Third</th>
<th>Fourth</th>
<th>Fifth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of matchsticks</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
General Exercises on the units

Exercices on Unit (1)

1. Complete:

<p>| | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>×</td>
<td>8</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>×</td>
<td>7</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>×</td>
<td>3</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>×</td>
<td>7</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>×</td>
<td>5</td>
<td>=</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>×</td>
<td></td>
<td>=</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>×</td>
<td></td>
<td>=</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>×</td>
<td>9</td>
<td>=</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>×</td>
<td></td>
<td>=</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>36</td>
<td>÷</td>
<td>6</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>42</td>
<td>÷</td>
<td>7</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>35</td>
<td>÷</td>
<td></td>
<td>=</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>÷</td>
<td>5</td>
<td>=</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>56</td>
<td>÷</td>
<td>7</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>24</td>
<td>÷</td>
<td></td>
<td>=</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>7</td>
<td>×</td>
<td></td>
<td>=</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>21</td>
<td>÷</td>
<td></td>
<td>=</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>+</td>
<td>9</td>
<td>+</td>
<td>9</td>
<td>+</td>
<td>9</td>
<td>=</td>
<td>9</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>+</td>
<td>6</td>
<td>+</td>
<td>6</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>7</td>
<td>×</td>
<td>4</td>
<td>=</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td>7</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>×</td>
<td>6</td>
<td>=</td>
<td></td>
</tr>
</tbody>
</table>

2. Choose the correct answer in each of the following:

1	4	×	9	=		(36, 27, 54)				
2		×	7	=	49	(6, 7, 8)				
3	5	+	5	+	5	+	5	=		(5 × 5, 5 × 6, 5 × 4)
4	6	+	6	+	6	+	6	=		(6 × 4, 6 × 5, 6 × 6)
5 2 × 6 = ___ (12, 24, 18)
6 4 × ___ = 28 (6, 5, 7)
7 ___ × 8 = 72 (7, 8, 9)
8 30 ÷ 6 = ___ (4, 5, 6)
9 28 ÷ 7 = ___ (4, 5, 6)
10 ___ ÷ 9 = 9 (1, 18, 81)
11 45 ÷ 5 = ___ (4, 6, 9)
12 24 ÷ 4 = ___ (4, 5, 6)
13 ___ × 3 = 24 (4, 6, 8)

(3) Compare using (< or > or =)

1 4 × 5 ___ 3 × 7
2 5 × 7 ___ 49
3 6 × 8 ___ 5 × 9
4 54 ___ 8 × 8
5 7 × 9 ___ 9 × 7
6 4 × 7 ___ 7 + 7 + 7 + 7
7 30 ___ 6 + 6 + 6 + 6
8 3 + 15 ___ 4 × 6
9 38 - 18 ___ 3 × 7
10 24 ÷ 4 ___ 35 ÷ 5
11 21 ÷ 7 ___ 1 × 4
12 6 + 6 + 6 ___ 2 × 9
13 49 ÷ 7 ___ 7
14 24 ÷ 3 ___ 24 ÷ 8
15 35 ___ 7 × 5
16 30 ÷ 5 ___ 3 × 3
(4) Complete in the same pattern:

1. 6, 12, 18, __________, __________, __________
2. 54, 48, 42, __________, __________, __________
3. 63, 54, 45, __________, __________, __________

(5) Amr is a good pupil, he studies 6 hours everyday. How many hours does he spend in studying in 9 days.
The number of studying in hours = __________ = __________ hours.

(6) A box of colours, it contains 5 colours. How many colours are there in 7 boxes?
The number of colours = __________ = __________

(7) If the price of a sandwich of chicken is 8 pounds. What is price of 6 sandwiches?
The price of sandwiches = __________ = __________ pounds.

(8) Ahmed saves 7 pounds every week. How much money does Ahmed save in 4 weeks?
What Ahmed saves = __________ = __________ pounds.

(9) Salma bought 4 books of 6 pounds for each. How much money did Salama pay?
What Salama paid = __________ = __________ pounds.

(10) A man distribute 45 pounds among his 5 sons, how much money does each son take?
What each son take = __________ = __________ pound.

(11) 54 oranges is divided equally on 6 plates. How many oranges are there in each plate?
Number of oranges = __________ = __________ orange
Exercises
On Unit (2)

(1) Complete the following:

1. Six thousands, five hundreds and fifty
2. Four thousands; six hundreds and thirty
3. Seventeen thousands, nine hundred and thirty
4. Thirty seven thousands, one hundred and thirty four
5. Five thousands and one
6. Eight thousands and nine
7. Twenty six thousands, one hundred and fifty
8. Sixty three thousands and eight
9. Ten thousands, one hundreds and one
10. One thousands, two hundreds and forty

(2) Write in letters each of the following:

1. 8576 is written in letters as
2. 9009 is written in letters as
3. 3030 is written in letters as
4. 2678 is written in letters as
5. 9531 is written in letters as
6. 1528 is written in letters as
7. 8576 is written in letters as
8. 25552 is written in letters as
9. 80000 is written in letters as
10 11064 is written in letters as

11 60044 is written in letters as

12 10010 is written in letters as

<table>
<thead>
<tr>
<th></th>
<th>Complete each of the following</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4965 = _____ + _____ + _____ + _____</td>
</tr>
<tr>
<td>2</td>
<td>18146 = _____ + _____ + _____ + _____ + _____</td>
</tr>
<tr>
<td>3</td>
<td>75432 = _____ + _____ + _____ + _____ + _____ + _____</td>
</tr>
<tr>
<td>4</td>
<td>6587 = _____ + 6000</td>
</tr>
<tr>
<td>5</td>
<td>12430 = 30 + 400 + _____</td>
</tr>
<tr>
<td>6</td>
<td>87981 = 81 + 900 + _____</td>
</tr>
<tr>
<td>7</td>
<td>43191 = 1 + _____ + _____ + _____ + 40000</td>
</tr>
<tr>
<td>8</td>
<td>6523 = 500 + _____ + _____ + _____</td>
</tr>
</tbody>
</table>

(4) Write the place value of the encircled digit:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>95</td>
<td>43</td>
<td>04</td>
<td>37</td>
<td>55</td>
<td>01</td>
<td>89</td>
</tr>
<tr>
<td>8</td>
<td>76</td>
<td>59</td>
<td>61</td>
<td>80</td>
<td>00</td>
<td>94</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>98</td>
<td>16</td>
<td>56</td>
<td>80</td>
<td>13</td>
<td>24</td>
<td>62</td>
</tr>
</tbody>
</table>

104 Mathematics For Primary 3 - First Term 2018 - 2019
(5) Write the place value of the encircled digit:

| | 1 8 6 4 3 2 | 2 5 3 2 3 7 | 3 6 0 9 6 9 | 4 4 3 5 9 4 | 5 5 0 7 5 5 | 6 8 7 4 7 9 | 7 8 9 5 3 5 | 8 7 8 5 0 6 | 9 7 8 1 6 2 | 10 4 5 6 0 9 | 11 4 6 8 0 8 | 12 7 5 4 9 9 | 13 1 7 5 1 3 |

(6) Rearrange the following numbers ascendingly and descendingly:

<table>
<thead>
<tr>
<th>Numbers:</th>
<th>6 5 2 4 , 4 5 2 4 , 7 6 2 4 , 1 6 2 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascendingly:</td>
<td>, , , ,</td>
</tr>
<tr>
<td>Descendingly:</td>
<td>9 4 3 4 , 9 3 4 4 , 9 7 3 4 , 9 3 3 4</td>
</tr>
<tr>
<td>Ascendingly:</td>
<td>, , , ,</td>
</tr>
<tr>
<td>Descendingly:</td>
<td>8 7 2 1 , 8 2 3 5 , 8 3 2 4 , 8 8 8 7</td>
</tr>
<tr>
<td>Ascendingly:</td>
<td>, , , ,</td>
</tr>
<tr>
<td>Descendingly:</td>
<td>6 8 1 9 , 6 8 1 3 , 6 7 1 3 , 6 8 2 0</td>
</tr>
</tbody>
</table>
(7) Complete in the same pattern:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6542, 6553, 6564, _______________</td>
</tr>
<tr>
<td>2</td>
<td>2225, 3235, 4245, _______________</td>
</tr>
<tr>
<td>3</td>
<td>5686, 5675, 5664, _______________</td>
</tr>
<tr>
<td>4</td>
<td>9866, 9856, 9846, _______________</td>
</tr>
<tr>
<td>5</td>
<td>2211, 3322, 4433, _______________</td>
</tr>
<tr>
<td>6</td>
<td>7979, 6868, 5757, _______________</td>
</tr>
<tr>
<td>7</td>
<td>4400, 4600, 4800, _______________</td>
</tr>
<tr>
<td>8</td>
<td>_______________, 6000, 8000, 10000</td>
</tr>
<tr>
<td>9</td>
<td>_______________, 3000, 3100, 3200, _______________</td>
</tr>
<tr>
<td>10</td>
<td>_______________, 5000, 7000, 9000</td>
</tr>
</tbody>
</table>
Exercises on unit (3)

(1) Add

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>1253</td>
<td>(b)</td>
</tr>
<tr>
<td></td>
<td>+ 2324</td>
<td></td>
</tr>
<tr>
<td>(d)</td>
<td>7126</td>
<td>(e)</td>
</tr>
<tr>
<td></td>
<td>+ 2008</td>
<td></td>
</tr>
<tr>
<td>(g)</td>
<td>18087</td>
<td>(h)</td>
</tr>
<tr>
<td></td>
<td>12301</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12001</td>
<td></td>
</tr>
</tbody>
</table>

(2) Choose the suitable relation (> - < - =)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4567 + 2135</td>
<td>2135 + 4567</td>
</tr>
<tr>
<td>2</td>
<td>5289 + 1000</td>
<td>5389 + 1000</td>
</tr>
<tr>
<td>3</td>
<td>6340 + 2320</td>
<td>6340 + 4320</td>
</tr>
<tr>
<td>4</td>
<td>7234 + 1320</td>
<td>5234 + 4320</td>
</tr>
<tr>
<td>5</td>
<td>8527 - 2500</td>
<td>8527 - 3500</td>
</tr>
<tr>
<td>6</td>
<td>6266 - 266</td>
<td>4000 + 2000</td>
</tr>
<tr>
<td>7</td>
<td>9736 - 8736</td>
<td>400 + 700</td>
</tr>
<tr>
<td>8</td>
<td>2020 + 1000</td>
<td>3020 - 1000</td>
</tr>
<tr>
<td>9</td>
<td>2010 - 2008</td>
<td>3</td>
</tr>
</tbody>
</table>
10 9215 - 43 43 + 9215
11 72163 - 3363 68800
12 2516 + 384 4000 - 384
13 85632 - 7289 78343
14 8615 - 2419 3450 + 1250
eighty thousands
15 45698 + 34302
16 (6300 + 89) - 89 6300
17 7 unit; 5 ten, 7 thousands 757

(3) Add:
1 1452 + 8023 =
2 4580 + 3029 =
3 2789 + 4211 =
4 20268 + 11673 =
5 17077 + 5725 =
6 8435 + 777 =
7 5482 + 4517 =
8 2358 + 87641 =
9 31239 + 8549 =
10 14527 + 1523 + 287 =

(4) Complete:
1 5643 + 4125 = 4125 + __________
2 2008 + __________ = 2010 + 2008
3 (7004 + 8657) + 2153 = __________ + (8657 + 2153)
4 (2005 + 3450) + __________ = 2005 + (3450 + 7878)
5 (12356 + __________) + 8400 = __________ + (3005 + 8400)
6 (36572 + 52132) + 40008 = __________ + (__________ + 40008)
(5) Encircle the closest number to the result (without adding):

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3287</td>
<td>+</td>
<td>2732</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4009</td>
<td>+</td>
<td>3225</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7052</td>
<td>+</td>
<td>3806</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12198</td>
<td>+</td>
<td>3806</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5302</td>
<td>+</td>
<td>113</td>
<td>=</td>
<td></td>
</tr>
</tbody>
</table>

(6) Given that 24869 + 4251 = 29120 find the result of the following (mentally):

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24869</td>
<td>+</td>
<td>5251</td>
</tr>
<tr>
<td>2</td>
<td>24869</td>
<td>+</td>
<td>2251</td>
</tr>
<tr>
<td>3</td>
<td>24859</td>
<td>+</td>
<td>4241</td>
</tr>
<tr>
<td>4</td>
<td>24569</td>
<td>+</td>
<td>4251</td>
</tr>
<tr>
<td>5</td>
<td>20869</td>
<td>+</td>
<td>8251</td>
</tr>
</tbody>
</table>

(7) Colour the cards which give equal results with the same colour:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17492 + 53978</td>
<td>29064 + 18184</td>
<td>700 + 90 + 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18180 + 29068</td>
<td>(542+317)+151</td>
<td>63978 + 7492</td>
<td></td>
<td></td>
</tr>
<tr>
<td>795</td>
<td>53978 + 17492</td>
<td>(511+542)+317</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(8) Use the digits 1, 7, 2, 5 to determine the value of:

The greatest 4 different number is ____________
The smallest digit number is ____________
The sum of the two numbers = _______ + _______ = _______
The difference = _______ - _______ = _______

(9) If the number of born children in one month in Aswan is 27854 and in Kena is 54069, find their sum in the two governorates.

The sum = ____________ = ____________ people

(10) Subtract:

(a) 6534
- 4123

(b) 7682
- 453

(c) 9842
- 87

(d) 42780
- 1239

(e) 98247
- 49128

(f) 12530
- 10643

(g) 46200
- 12483

(h) 81008
- 64029

(i) 12000
- 7859

(11) Subtract:

1 4259 - 948 = _______
2 6410 - 2389 = _______
3 51219 - 37005 = _______
4 35797 - 28980 = _______
5. \(20009 - 16789 =\) ____________
6. \(50007 - 34160 =\) ____________
7. \(80054 - 89 =\) ____________
8. \(10000 - 9999 =\) ____________
9. \(99991 - 89999 =\) ____________

Encircle the closest number to the result (without adding)

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7157</td>
<td>-</td>
<td>4852</td>
<td>=</td>
<td>[1000 , 2000 , 3000]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5827</td>
<td>-</td>
<td>952</td>
<td>=</td>
<td>[4000 , 5000 , 6000]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6928</td>
<td>-</td>
<td>4219</td>
<td>=</td>
<td>[1000 , 2000 , 3000]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7871</td>
<td>-</td>
<td>3128</td>
<td>=</td>
<td>[4000 , 3000 , 5000]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>23111</td>
<td>-</td>
<td>13216</td>
<td>=</td>
<td>[1000 , 10000 , 15000]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4272</td>
<td>-</td>
<td>389</td>
<td>=</td>
<td>[3000 , 4000 , 2000]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Choose the suitable (> ; < ; =)

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5980 + 3764</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3764 + 5980</td>
</tr>
<tr>
<td>2</td>
<td>12897 + 56328</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56327 + 12898</td>
</tr>
<tr>
<td>3</td>
<td>8 + 200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2008</td>
</tr>
<tr>
<td>4</td>
<td>7809 + 2098</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8000</td>
</tr>
<tr>
<td>5</td>
<td>85732 + 874</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85752 + 854</td>
</tr>
<tr>
<td>6</td>
<td>18248 + 17233</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19154 + 42245</td>
</tr>
<tr>
<td>7</td>
<td>5029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2198 + 2831</td>
</tr>
</tbody>
</table>

Akhbar Press
Mathematics For Primary 3 - First Term
(14) Rearrange the following numbers ascendingly once and descendingly once, then find the sum of the greatest and the smallest and the difference between them:

(a) 2541, 4251, 1542, 4521

Ascendingly:

Descendingly:

The greatest number is

The smallest number is

The sum of the two numbers = + =

The difference = - =

(b) 73638, 25618, 93818, 3620

Ascendingly:

Descendingly:

The greatest number is

The smallest number is

The sum of the two numbers = + =

The difference = - =

(15) Complete the following:

\[
\begin{align*}
6 & \quad 8 & \quad 1 & \quad 7 \\
+ & & & \\
\hline
7 & \quad 0 & \quad 5 & \quad 7 \\
\end{align*}
\]

\[
\begin{align*}
 & & & \\
 & & & \\
\hline
 & & & \\
\end{align*}
\]

\[
\begin{align*}
1 & \quad 3 & \quad 0 & \quad 8 & \quad 7 \\
- & & & \\
\hline
2 & \quad 5 & \quad 7 & \quad 6 \\
\end{align*}
\]

\[
\begin{align*}
 & & & \\
 & & & \\
\hline
 & & & & \\
\end{align*}
\]

\[
\begin{align*}
 & & & \\
 & & & \\
\hline
 & & \\
\end{align*}
\]
(16) Complete in the same pattern

1 5819, 4819, 3819, __________, __________
2 6923, 6823, 6723, __________, __________
3 47839, 47829, 47819, __________, __________
4 __________, 4200, 4600, 5000, __________
5 27005, 27055, 27105, __________, __________
6 __________, __________, 15500, 14000, 12500

(17) Rearrange the following numbers ascendingly once and descendingly then find the sum of the greatest and the smallest and the difference between them

(a) 42300, 6751, 26075, 36507, 27750

The ascending order: __________, __________, __________, __________, __________
The descending order: __________, __________, __________, __________, __________
The greatest number is __________
The smallest number is __________
The sum of the two numbers = __________ + __________ = __________
The difference = __________ - __________ = __________

(b) 89632, 40032, 231981, 6097, 9078

The ascending order: __________, __________, __________, __________, __________
The descending order: __________, __________, __________, __________, __________
The greatest number is __________
The smallest number is __________
The sum of the two numbers = __________ + __________ = __________
The difference = __________ - __________ = __________
(18) Use all the following digits to determine the values of the following:

a) $3, 7, 1, 8, 9$

The greatest different digit number is

The smallest different digit number is

The sum of the two numbers $= \underline{\hspace{2cm}} + \underline{\hspace{2cm}} = \underline{\hspace{2cm}}$

The difference $= \underline{\hspace{2cm}} - \underline{\hspace{2cm}} = \underline{\hspace{2cm}}$

b) $2, 0, 9, 6, 5$

The greatest different digit number is

The smallest different digit number is

The sum of the two numbers $= \underline{\hspace{2cm}} + \underline{\hspace{2cm}} = \underline{\hspace{2cm}}$

The difference $= \underline{\hspace{2cm}} - \underline{\hspace{2cm}} = \underline{\hspace{2cm}}$

c) $8, 7, 6, 1, 3$

The greatest different digit number is

The smallest different digit number is

The sum of the two numbers $= \underline{\hspace{2cm}} + \underline{\hspace{2cm}} = \underline{\hspace{2cm}}$

The difference $= \underline{\hspace{2cm}} - \underline{\hspace{2cm}} = \underline{\hspace{2cm}}$

d) $5, 1, 7, 2, 6$

The greatest different digit number is

The smallest different digit number is

The sum of the two numbers $= \underline{\hspace{2cm}} + \underline{\hspace{2cm}} = \underline{\hspace{2cm}}$

The difference $= \underline{\hspace{2cm}} - \underline{\hspace{2cm}} = \underline{\hspace{2cm}}$
e) 6, 2, 8, 1, 7
The greatest different digit number is ____________
The smallest different digit number is ____________
The sum of the two numbers = ____________ + ____________ = ____________
The difference = ____________ - ____________ = ____________

(19) If the cash donations for a hospital (57357) is 40932 pounds in one week and 39798 pounds in another week. Find the total donations in the two weeks.

The total = ____________ = _______ pounds

(20) 37939 and 47989 housing units are built in one governorates in two successive years. Find the sum of units built in the two years.

The sum = _______ + _______ = _______ unit

(21) A shop sold goods for 54786 pounds in one day and for 44243 pounds in the next day. What is the total sales in the days?

The total sales = ____________ = _______ pounds.
(22) Ihab bought a car for 22000 pounds, then he sold it with a loss of 6000 pounds. Find the selling price?

The selling price = _______ = _______ pounds

(23) If the tax department income from one organisation is 4578 pounds and from another organisation is 3719 pounds. Find the sum of incomes from the two organisations.

The sum = _______ = _______ pounds
(1) Complete:

1. The base of the cylinder is in the form of a ________
2. The number of the faces of a cube = ________
3. The number of the edges of the cuboid = ________
4. The solid which has no vertices, has two circular bases is ________
5. The measure of the acute angle ________ the measure of the obtuse angle \(< \text{ or } > \text{ or } = \).
6. The type of the angle whose measure 98° is ________ \(< \text{ or } > \text{ or } = \)
7. The type of the angle whose measure 150° is ________
8. The measure of the right angle ________ the measure of the obtuse angle \(< \text{ or } > \text{ or } = \)
9. The number of the vertices of a cube = ________ \(< \text{ or } > \text{ or } = \)
10. The measure of the right angle = ________
11. The number of the vertices of a cube ________ the number of the vertices of a cuboid. \(< \text{ or } > \text{ or } = \)
12. The number of the edges of a cube = ________
13. The type of the angle whose measure 120° is ________
14. The type of the angle whose measure 90° is ________

(2) Draw ABC of measure 60° then determine its type:
(3) Draw the square XYZL of side length 5 unit long on the opposite lattice, (consider the side length of the small square as a unit length).

(4) In the opposite rectangle draw the line.
 Segment AB of length 5cm

(5) Use the protractor to measure each of the following angles, then determine the type of each one

<table>
<thead>
<tr>
<th>Angle</th>
<th>Its measure</th>
<th>Its type</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Angle 1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>![Angle 2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>![Angle 3]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(6) Draw a congruent figure to the given figure.
Firstly: Complete:

1. Complete in the same pattern: 98970, 98860, ____, ____, 98530
2. $7 + 40 + 500 + 3000 + 20000 = ______
3. $6 \times 9 = 6 \times 3 \times ______$
4. $65432 + ______ = 90000$
5. $(4793 + ______) + 1752 = 4793 + (5951 + 1752)$
6. The solid which has 6 faces, each face is in the form of a square is __________

7. Use the angle $\angle ABC = 30^\circ$, the measure of $\angle ABC = _______$.
Secondly: Choose the correct answer:

8. Twenty five thousand and fifteen:
 - a) 1515
 - b) 25015
 - c) 2515

9. The measure of angle ABC =°

10. Which of the following is arranged in an ascending order:
 - a) 76543, 76453, 76345, 76435
 - b) 44923, 54822, 21712, 25346
 - c) 28654, 47564, 52943, 62981

11. \(\text{Money symbol} + 5 = \)
 - a) 3
 - b) 4
 - c) 5

12. After folding the opposite figure and glue it gives a
 - a) cube
 - b) cuboid
 - c) prism
13. In the opposite figure.
Complete:
The side length of square = unit length

 a) 4 b) 5 c) 8

14. \((4 \times 5) + 4\) \[\begin{array}{c}
\text{a) >} \\
\text{b) <} \\
\text{c) =}
\end{array}\] \(4 \times 6\)

15. \(1632 + 2435 = \) __________
 a) 67 + 40 b) 76 + 400 c) 7 + 60 + 4000

16. Which of the following statement is correct:
 a) 4167 < 4079 b) 2974 < 3947 c) 8936 = 9396

17. A number consists of 4 digits its unit 8, tens half units, hundreds half tens, thousands half hundreds. The number is __________
 a) 2148 b) 2418 c) 1248
18. Mazen bought a refrigerator for L.E 3220 and T.V For 740 The total Mazen paid is _________.
 a) 3960 b) 3220 c) 2480

19. A father wants to distribute 24 bars of chocolate among his 4 sons, so each of them will take required:
 a) addition b) multiplication c) division

 Thirdly: Find the results:

20. Samir bought 7 coloured boxes, each contains 6 pens, how many pens are there in these 7 boxes?
 Number of pens = ____________ = ____________

21. The opposite figure is:
 (a) Its name is ____________
 (b) Number of its vertices = ____________
 (c) Number of its faces = ____________
 (d) Number of edges = ____________

22. (a) Add: 2148 + 1435 = ____________
 (b) subtract: 3987 - 1652 = ____________
Firstly: Choose the correct answer:

1. The smallest number formed from the digits (5, 3, 2, 1 and is 8)
 - a) 5321
 - b) 85321
 - c) 12358

2. Shaimaa has L.E 2120. and she wants to buy a refrigerator for L.E 3220. The previous operation is:
 - a) adding
 - b) subtracting
 - c) multiplying

3. The number of edges of a cube = edges
 - a) 6
 - b) 8
 - c) 12

4. The number opposite is:
 - a) 6430
 - b) 6403
 - c) 3046
5. Adel has 5 coins of L.E 1, 7 note bank of L.E 10 and 3 note bank of L.E 100, then the total __________
 a) 375 b) 735 c) 573

6. 24 + 6 _________ 2 × 6
 a) > b) < c) =

7. \((654 + 7500) + 3664 = 6541 + (7500 + \underline{\text{________}})\)
 a) 4366 b) 6643 c) 3664

8. Twenty four thousands, seven hundreds and one is written as ________
 a) 24917 b) 24701 c) 24107

9. \underline{\text{________}} × 3 > 6 × 3
 a) 4 b) 5 c) 8

10. When dividing the number represented in the opposite figure by 7, the result is ________
 a) 2 b) 6 c) 8
11. The angle is straight when the clock is: ____________
 a) 2 O’clock b) 6 O’clock c) 3 O’clock

12. The triangular pyramid its base on the shape of:
 a) Triangle b) Square c) Circle

Secondly:

13. Complete: The opposite shape \[A \rightarrow B \rightarrow C \] represents angle its type ________

14. Complete in the same pattern:
 9700, 8700, 7700, ____________

15. \[47386 + 52613 = \] ____________

16. The number that must be added to 7435 for the result be 8276 is ________

17. \[81 \div 9 = \] ____________

18. \[6 + 6 + 6 + 6 > 5 \times \] ____________

19. Third: After folding the opposite figure and glue it gives a ____________
Thirdly:

20. Draw a rectangle of dimensions 3 cm, 4 cm

21. Asmaa bought 7 rabbits, she wants to count their legs. How she can do this without using the addition operation?

22. a) Add: $3287 + 2732 = \underline{}$

 b) Subtract: $6417 - 3519 = \underline{}$
Firstly: Choose the correct answer

1. \[2 + 4 \times 10 + 5 \times 100 + 2 \times 1000 = \]
 a) 5242
 b) 4252
 c) 2542

2. The name of a supermarket in a day was 5817 and the outcome in the same day was 3356, to know the project we do:
 a) adding
 b) subtracting
 c) multiplication

3. \[4237 + 1159 \text{ near to:} \]
 a) 6000
 b) 5000
 c) 4000

4. \[24 \div 4 > \]
 a) 2
 b) 3
 c) 6
5. Ahmed saves £3423 and his brother Aly £2632. Then what they save to gather is ________________
 a) 60560 b) 50650 c) 60550

6. \((6 \times 100) + (6 \times 9) = \) ________________
 a) 564 b) 654 c) 645

7. \((2721 + 6582) + 1730 = 2721 + (6582 + \) ________________\)
 a) 3170 b) 1730 c) 1703

8. The remainder of subtracting 38254 from 59223 = ________________
 a) 29069 b) 21031 c) 20969

9. \(5 \times 9 = 40 + \ldots \)
 a) 5 b) 9 c) 1

10. Number of edges of _______ Number of vertices of _______
 a) > b) < c) =

11. The base of the cylinder is:
 a) triangle b) square c) circle
12. The angle of measure 48° is ____________ angle
 a) an acute b) a right c) an obtuse

Secondly: Complete

13. $74835 = 835 + 4000 + _________$

14. Complete in the same pattern:
 $4386, 4387, 4388, _________, _________$

15. $36 + ___________ < 6 \times 7$

16. The result of $1064 + 1036 = ___________$

17. The number of triangles = ___________ triangle

18. The solid which has six square faces is called ___________

19. The opposite solid is called ___________
Third: Answer the following

20 Hazem bought some food for P.T 6224 and some fruits for P.T 3176.
Find the total which Hazem paid

21 use the protractor, ruler draw \(\angle ABC \) of measure 75°

22 A box of spread cheese has 8 pieces triangles.
What is the number of triangles in 9 boxes?
The number of pieces in 9 boxes =

= ____________________________
جميع حقوق الطبع محفوظة لوزارة التربية والتعليم داخل جمهورية مصر العربية
<table>
<thead>
<tr>
<th>الخاصية</th>
<th>المعلومة</th>
</tr>
</thead>
<tbody>
<tr>
<td>رقم الكتاب</td>
<td>903/10/11/10/93</td>
</tr>
<tr>
<td>مقاس الكتاب</td>
<td>28 × 20 سم</td>
</tr>
<tr>
<td>طباعة المتن</td>
<td>4 لون</td>
</tr>
<tr>
<td>طباعة الفلافل</td>
<td>4 لون</td>
</tr>
<tr>
<td>ورق المتن</td>
<td>80 جم أبيض</td>
</tr>
<tr>
<td>ورق الفلافل</td>
<td>200 جم كويشيه</td>
</tr>
<tr>
<td>عدد الصفحات بالفلافل</td>
<td>140 صفحة</td>
</tr>
</tbody>
</table>